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Abstract

A Cayley permutation is a word of positive integers such that if a letter
appears in this word, then all positive integers smaller than that letter also
appear. We initiate a systematic study of pattern avoidance on Cayley permu-
tations adopting a combinatorial species approach. Our methods lead to species
equations, generating series, and counting formulas for Cayley permutations
avoiding any pattern of length at most three. We also introduce the species of
primitive structures as a generalization of Cayley permutations with no “flat
steps”. Finally, we explore various notions of Wilf equivalence arising in this
context.

1 Introduction

A permutation w (written in one-line notation) is said to contain a permutation p
as a pattern if some subsequence of the entries of w has the same relative order as
all of the entries of p. If w does not contain p, then w is said to avoid p. One
of the first notable results in the field of permutation patterns was obtained by
MacMahon [50] in 1915 when he proved that the Catalan numbers enumerate the 123-
avoiding permutations. The study of permutation patterns began receiving focused
attention following Knuth’s introduction of stack-sorting in 1969 [46]. Knuth proved
that a permutation can be sorted by a stack if and only if it avoids the pattern
231. The Catalan numbers also enumerate the stack-sortable permutations. The
first explicit systematic treatment of pattern avoidance was conducted by Simion
and Schmidt [64]. In subsequent years, the notion of pattern avoidance has been
extended to numerous combinatorial objects, including set partitions [26, 42, 61],
multiset permutations [37, 62], compositions [37, 43, 62], ascent sequences [24, 26, 27],
and modified ascent sequences [14, 15]. We refer the reader to the books by Bóna [11]
and Kitaev [45] for a comprehensive summary of pattern avoidance in permutations
and words.

∗G.C. is member of the Gruppo Nazionale Calcolo Scientifico–Istituto Nazionale di Alta Matem-
atica (GNCS-INdAM).



In this paper, we study pattern avoidance in the setting of Cayley permutations,
which were so named by Mor and Fraenkel in 1983 [54]. A Cayley permutation w
is a word of positive integers such that if a letter b appears in w then all positive
integers a < b also appear in w. Let us provide some background on why these
words may be interesting and how they got their name. In a short article from
1895, Cayley [12] counted a loosely-defined class of trees, and the following is an
interpretation of their definition. The class in question consists of unlabeled rooted
plane trees with a fixed number of leaves. In addition, all leaves are equidistant from
the root, and the number of nodes at distance i + 1 from the root is either zero or
larger than the number of nodes at distance i from the root. For instance, these are
all such trees with three leaves:

1 1 1 2 2 1

Written between each pair of adjacent leaves is the shortest distance to a common
ancestor of the two leaves. The resulting words are exactly the Cayley permutations
of length two: 11, 12, and 21. This connection between the trees and the words seems
to have been first noted by MacMahon [49], though he formulated it in terms of
compositions of a “multipartite number”. Cayley derived the exponential generating
series

1

2− ex
= 1 + x+ 3 · x

2

2!
+ 13 · x

3

3!
+ 75 · x

4

4!
+ 541 · x

5

5!
+ · · ·

for the number of trees with n+1 leaves, which is the same as the number of Cayley
permutations of length n. The coefficients 1, 1, 3, 13, 75, 541, . . . of this series
are known as the Fubini numbers, and they appear as entry A000670 in the Online
Encyclopedia of Integer Sequences (OEIS) [57].

There are quite a few authors building on the work of Mor and Fraenkel [54]. They
include Fraenkel and Mor [30], Fraenkel [29], Bernstein and Sloane [5], Göbel [32],
Hoffman [38, 39], Baril [3], Jacques, Wong, and Woo [41], Mütze [55], Cerbai [13,
14, 15], Cerbai and Claesson [16, 17, 18], and Cerbai, Claesson and Sagan [19].
This list is not complete; it is not even complete when restricting to authors using
the Cayley permutation terminology. It is even less complete when the multitude
of different guises that Cayley permutations have appeared under are taken into
account. Synonyms for Cayley permutation include packed word [28, 47, 51, 52],
surjective word [36], Fubini word [8, 60, 65], and initial word [58].

Cayley permutations may be seen as representatives for equivalence classes of words
modulo order isomorphism. For instance, if we take the ambient space of words to
be {1, 2, 3}3, then the equivalence class represented by 111 is {111, 222, 333}, while
112 represents {112, 223}. This hints at the view that Cayley permutations simply
are patterns [62] or (in statistics) generalized ordinal patterns [63].

A weak order [2, 9, 40, 41], also called a preferential arrangement [1, 7, 35, 56, 59] or
a race with ties [53], is a way to order objects where ties are allowed: it is a reflexive,
transitive, and total binary relation. To each Cayley permutation w = w1w2 . . . wn

there is an associated binary relation ⪯ defined by i ⪯ j ⇔ wi ≤ wj . This sets up a
one-to-one correspondence between Cayley permutations and weak orders.

Cayley permutations encode ballots, also known as ordered set partitions: if ϖ is a
ballot on {1, . . . , n}, then the corresponding Cayley permutation w has n letters and
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its ith letter equals the unique index j such that i belongs to the jth block ofϖ. While
pattern avoidance has been studied in the context of ballots [9, 20, 33, 44], the notion
of pattern avoidance we explore in this paper is distinct. The interplay between
(equivalence classes of) pattern-avoiding Cayley permutations and modified ascent
sequences was explored by Cerbai and Claesson [17]. The same authors introduced
Caylerian polynomials [18], a generalization of the Eulerian polynomials that tracks
the number of descents over Cayley permutations.

Most of the structures listed so far can be encoded as Cayley permutations satisfying
additional properties. For instance, modified ascent sequences are Cayley permuta-
tions where an entry is an ascent top if and only if it is the leftmost copy of the
corresponding integer in the sequence [17]. Another classical example is given by
Stirling permutations [31], defined as 212-avoiding Cayley permutations in which
each letter appears twice.

Our approach to pattern-avoiding Cayley permutations involves the use of com-
binatorial species, defined in Section 2, as formal objects that capture both their
structural and enumerative properties. In Section 3, we define the species of Cay-
ley permutations and in Section 4, we introduce the notion of pattern avoidance for
Cayley permutations. These sections lay the groundwork for the remainder of the
paper. In Sections 5 and 6, we provide species descriptions that lead to generating
series and counting formulas for Cayley permutations avoiding any pattern of length
two and three. Table 1 summarizes our main results. In Section 7, we introduce
the species of primitive structures as a generalization of Cayley permutations with
no “flat steps” and study pattern avoidance in this context. The paper concludes in
Section 8 with an exploration of various notions of Wilf equivalence in connection
with Cayley permutations.

The work contained in this paper was initiated in the fourth author’s 2024 master’s
thesis [34]. In an upcoming companion paper, we will tackle sets of patterns.

2 Species

In this section, we mimic the development of species in the book by Bergeron, Labelle
and Leroux [4]. See also Claesson’s short introduction to the topic [21]. We utilize
two different types of species, namely B-species and L-species. Loosely speaking, a
species defines both a class of (labeled) combinatorial objects and how those objects
are impacted by relabeling. This mechanism of relabeling is called the transport of
structure.

A B-species (or simply species) F is a rule that produces

• for each finite set U , a finite set F [U ];

• for each bijection σ : U → V , a bijection F [σ] : F [U ] → F [V ] such that
F [σ ◦ τ ] = F [σ] ◦ F [τ ] for all bijections σ : U → V , τ : V → W , and F [idU ] =
idF [U ] for the identity map idU : U → U .

An element s ∈ F [U ] is called an F -structure on U and the function F [σ] is called
the transport of F -structures along σ, or simply transport of structure if the context
is clear.
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In the language of category theory, a B-species is a functor F : B → B, where B is
the category of finite sets with bijective functions as morphisms.

Below we list several species that will be used throughout this paper.

(a) E: sets;

(b) Eeven: sets of even cardinality;

(c) Eodd: sets of odd cardinality;

(d) X: singletons;

(e) 1: characteristic of empty set;

(f) L: linear orders;

(g) S: permutations;

(h) C: cyclic permutations;

(i) Par: set partitions;

(j) Bal: ballots.

Let F and G be species. Then G is said to be a subspecies of F , and we write G ⊆ F ,
if it satisfies the following two conditions:

• for each finite set U , we have G[U ] ⊆ F [U ];

• for any bijection σ : U → V , we have G[σ] = F [σ]|G[U ].

For a species F , we let F+, Feven, Fodd, and Fn denote the subspecies of F consisting of
F -structures on nonempty sets, sets with even cardinality, sets with odd cardinality,
and sets with cardinality n, respectively.

Throughout this paper, we define [n] = {1, 2, . . . , n} for n ≥ 0, where [0] = ∅.

Example 2.1 (Linear orders). Let U be a finite set with n = |U | elements. We
identify a linear order of U with a bijection f : [n] → U , which we may represent
using one-line notation: f(1) . . . f(n). Letting BA denote the set of functions from A
to B, we have L[U ] = {f ∈ U [n] : f bijection}. Note that |L[U ]| = n!. The transport
of structure along a bijection σ : U → V is given by L[σ](f) = σ ◦ f or, in one-line
notation, L[σ](f) = σ(f(1)) . . . σ(f(n)).

Example 2.2 (Permutations). Next we describe the species S of permutations. The
S-structures are defined by S[U ] = {f ∈ UU : f bijection} while the corresponding
transport of structure along a bijection σ : U → V is given by S[σ](f) = σ ◦ f ◦ σ−1.
This reflects the fact that conjugation preserves the cycle type of a permutation.
Note that |S[U ]| = n! when |U | = n.

To aid in the enumeration of F -structures, we associate an exponential generating
series, denoted by F (x). It is easy to see that for any finite set U , the number of F -
structures on U depends only on the number of elements of U . For ease of notation,
we use F [n] = F [[n]]. We define the (exponential) generating series of the species F
to be the formal power series

F (x) =
∑
n≥0

|F [n]|x
n

n!
.

The generating series associated with some of the species introduced above are pro-
vided below.
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F [V ]

F [U ]

G[V ]

G[U ]

F [σ]

αU

G[σ]

αV

Figure 1: Commutative diagram for isomorphic species.

(a) E(x) = ex;

(b) Eeven(x) = cosh(x);

(c) Eodd = sinh(x);

(d) X(x) = x;

(e) 1(x) = 1;

(f) L(x) = 1/(1− x);

(g) S(x) = 1/(1− x);

(h) C(x) = − log(1− x);

(i) Par(x) = exp(ex − 1);

(j) Bal(x) = 1/(2− ex).

Two species F and G are isomorphic if there is a family of bijections

αU : F [U ] → G[U ]

such that for any bijection σ : U → V between two finite sets, the diagram in Figure 1
commutes. That is, αV ◦ F [σ] = G[σ] ◦ αU . In the language of category theory, F
and G are isomorphic if and only if there exists a natural isomorphism between the
functors F and G. As is tradition, we will consider two species as equal if they
are isomorphic and use the notation F = G for both concepts. Clearly, if F = G,
then F (x) = G(x). It is important to note that, for B-species, the converse of this
implication is false. Recall the species L (linear orders) and S (permutations) from
Examples 2.1 and 2.2. Despite L and S not being isomorphic, it should come as no
surprise that they have the same generating series.

One can build new species with operations on previously known species. For species
F and G, an (F +G)-structure is either an F -structure or a G-structure. Denoting
disjoint union by ⊔, we have

(F +G)[U ] = F [U ] ⊔G[U ]

and for all bijections σ : U → V ,

(F +G)[σ](s) =

{
F [σ](s) if s ∈ F [U ],

G[σ](s) if s ∈ G[U ].

It is easy to see that (F +G)(x) = F (x) +G(x).

For species F and G, we define an (F · G)-structure on a finite set U to be a pair
(s, t) such that s is an F -structure on a subset U1 ∈ U and t is a G-structure on
U2 = U \ U1. Formally,

(F ·G)[U ] =
⊔

(U1,U2)

F [U1]×G[U2]
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with U = U1 ⊔ U2. Transport of structure is defined by

(F ·G)[σ](s, t) = (F [σ1](s), G[σ2](t)),

where σ1 = σ|U1 and σ2 = σ|U2 . It turns out that (F ·G)(x) = F (x) ·G(x).

Now we define the composition of species. For species F and G, an (F ◦G)-structure
is a generalized partition in which each block of a partition carries a G-structure and
blocks are structured by F . Formally, if F and G are two species such that G[∅] = ∅,
we define

(F ◦G)[U ] =
⊔

β={B1,...,Bk}

F [β]×G[B1]× · · · ×G[Bk],

where β = {B1, . . . , Bk} is a partition of U . The details on the transport of structure
can be found in Chapter 1 of the book by Bergeron, Labelle and Leroux [4] or on
page 521 of Claesson [21]. As expected, it is also true that (F ◦G)(x) = F (G(x)).

Example 2.3 (Cyclic permutations). Any permutation can be written as a product
of disjoint cycles. Since the cycles are disjoint they commute and can be written in
any order. In other words, a permutation can be viewed as a set of cycles. In terms
of composition of species we have

S = E(C),

where C is the species of cyclic permutations; that is, permutations that when written
as a product of disjoint cycles consist of a single cycle.

Example 2.4 (Ballots). A ballot on a finite set U is a sequence of sets B1B2 . . . Bk,
where each Bi is a nonempty subset of U , Bi ∩ Bj ̸= ∅ for i ̸= j, and

⋃k
i=1Bi = U .

Each Bi is referred to as a block. The species of ballots is given by Bal = L(E+). For
a bijection σ : U → V , the transport of structure Bal[σ] : Bal[U ] → Bal[V ] is given
by

Bal[σ](B1B2 . . . Bk) = σ(B1)σ(B2) . . . σ(Bk),

where σ(Bi) = {σ(x) : x ∈ Bi}. It follows that

Bal(x) = L(E+(x)) =
1

1− (ex − 1)
=

1

2− ex
.

The examples of species we have met thus far are well known [4]. In contrast, the
species specification of the alternating group given in the next example is, as far as
we know, new.

Example 2.5 (Alternating group). Let a permutation f ∈ S[n] be given and assume
that when written as a product of disjoint cycles it has c cycles. It is easy to see that
the parity of f is the same as the parity of n − c. Hence f is even if and only if n
and c are both even or n and c are both odd. Thus,

Alt = (Eeven ◦ C)even + (Eodd ◦ C)odd

is a species specification of the alternating group. The integers are commonly defined
as equivalence classes of pairs of natural numbers, where (a, b) ∼ (c, d) ⇔ a+d = b+c.
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Virtual species [4, §2.5] is a similar extension allowing for the subtraction of species.
Using virtual species, for any species F , we have

Feven = F0 + F2 + F4 + · · · = 1

2

(
F + F (−X)

)
;

Fodd = F1 + F3 + F5 + · · · = 1

2

(
F − F (−X)

)
.

For ease of notation, let Se = Eeven(C) and So = Eodd(C) be the species of permuta-
tions with an even and odd number of cycles, respectively. Then,

Alt = (Se)even + (So)odd

=
1

2

(
Se + Se(−X)

)
+

1

2

(
So − So(−X)

)
=

1

2

(
S + Se(−X)− So(−X)

)
. (1)

We will return to this example once L-species have been introduced.

The derivative of a species F , denoted F ′, is defined via

F ′[U ] = F [U ⊔ {⋆}]

and for a bijective map σ : U → V, we define F ′[σ] = F [τ ], where

τ(x) =

{
σ(x) if x ∈ U,

⋆ if x = ⋆.

In terms of generating series, we have F ′(x) = d
dx [F (x)].

Example 2.6. To illustrate the derivative of a species, we look at the derivative
of the species of linear orders. We claim that L′ = L2. Combinatorially, each L′-
structure is simply an L-structure preceding ⋆ followed by another L-structure. That
is, the derivative of a linear order just separates the linear order into two linearly
ordered components. For instance, 41 ⋆ 5263 7→ (41, 5263). Consequently, we have

L′(x) =
d

dx

[
1

1− x

]
=

1

(1− x)2
= L2(x).

The last operation we will define for B-species is pointing. For a species F , we define
the species F •, called F -pointed, via

F •[U ] = F [U ]× U.

That is, an F •-structure on U is a pair (s, u), where s is an F -structure on U and
u ∈ U is a distinguished element that we can think of as being “pointed at”. The
operations of pointing and differentiation are related by

F • = X · F ′.

Further, we have |F •[n]| = n|F [n]|.
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Next we look at L-species. The key differences is that for L-species, the underlying
sets are totally ordered and morphisms have to respect that order.

Let ℓ1 = (U1,⪯1) and ℓ2 = (U2,⪯2) be two totally ordered sets. Their ordinal sum
is the totally ordered set ℓ = (U,⪯), denoted by ℓ = ℓ1 ⊕ ℓ2, where

u ⪯ v ⇐⇒


u ≺1 v if u, v ∈ U1,

u ≺2 v if u, v ∈ U2,

u ∈ U1 and v ∈ U2 otherwise.

In other words, ℓ respects ℓ1 and ℓ2, and all elements of ℓ1 are smaller than the
elements of ℓ2. The totally ordered set obtained by adding a new minimum element
to ℓ is denoted by 1⊕ℓ. Similarly, we can append a new maximum element to obtain
ℓ⊕ 1.

An L-species is a functor F : L → B, where L is the category of finite totally ordered
sets with order preserving bijections. In other words, an L-species is a rule F that
associates

• for each finite totally ordered set ℓ, a finite set F [ℓ];

• for each order preserving bijection σ : ℓ1 → ℓ2, a bijection F [σ] : F [ℓ1] → F [ℓ2]
such that F [σ ◦ τ ] = F [σ] ◦ F [τ ] for all order preserving bijections σ : ℓ1 → ℓ2,
τ : ℓ2 → ℓ3, and F [idℓ] = idF [ℓ].

Any B-species F produces an L-species, also denoted by F , defined by setting

F [(U,⪯)] = F [U ],

for any totally ordered set ℓ = (U,⪯), where the transport of structure is obtained
by restriction to order preserving bijections. All of the B-species defined earlier have
the same name when interpreted as L-species.

Two L-species F and G are isomorphic if there is a family of bijections

αℓ : F [ℓ] → G[ℓ],

for each totally ordered set ℓ that commutes with the transports of structures.

For an L-species F , the associated generating series is defined in the same way as
for B-species: F (x) =

∑
n≥0 |F [n]|xn/n!. Since there is a unique order preserving

bijection between any two totally ordered sets with the same cardinality we have
that, for L-species, F = G if and only if F (x) = G(x). In particular, it is possible
for two nonisomorphic B-species to become isomorphic when looked at as L-species.
For example, as L-species, L = S. In this case, f ∈ S[n] naturally becomes the word
f(1)f(2) . . . f(n) ∈ L[n].

Operations on B-species can be extended to L-species while new operations such as
integration, ordinal product, and convolution also become possible. For an L-species
F , we define the derivative F ′ via

F ′[ℓ] = F [1⊕ ℓ].

Certainly, one can equivalently append a new maximal element to a totally ordered
set ℓ as opposed to a new minimal element, hence we have the alternative definition
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F ′[ℓ] = F [ℓ ⊕ 1]. We also define the integral of F , denoted
∫ X
0 F (T )dT , or more

simply
∫
F , by (∫

F

)
[ℓ] =

{
∅ if ℓ = ∅,
F [ℓ \ {min(ℓ)}] if ℓ ̸= ∅.

Given L-species F and G, we define the ordinal product F ⊙G via

(F ⊙G)[ℓ] =
∑

ℓ=ℓ1⊕ℓ2

F [ℓ1]×G[ℓ2].

In contrast to the product structure, an ordinal product structure (F ⊙ G)[ℓ] is
obtained by splitting ℓ into an initial segment ℓ1 and a terminal segment ℓ2, where
ℓ1 has an F -structure and ℓ2 has a G-structure. The convolution product F ∗ G is
given by

F ∗G = F ⊙X ⊙G.

Details about the corresponding transport of structures for each of these L-species
operations can be found in the usual book [4].

As expected, if F and G are L-species, then we have the following:

(a) (F +G)(x) = F (x) +G(x);

(b) (F ·G)(x) = F (x)G(x);

(c) (F ◦G)(x) = F (G(x)), where G(0) = 0;

(d) F ′(x) =
d

dx
F (x);

(e)

(∫ X

0
F (T )dT

)
(x) =

∫ x

o
F (t)dt;

(f) (F ∗G)(x) = F (x) ∗G(x) =

∫ x

0
F (x− t)G(t)dt.

In addition,

(g)
d

dx
[F (x) ∗G(x)] = F (0) ·G(x) + F ′(x) ∗G(x),

which is sometimes referred to as the Leibniz rule.

Example 2.7 (Alternating group as an L-species). Clearly, we have the B-species
identity E = Eeven + Eodd, which is reflected in the familiar hyperbolic functions
identity ex = cosh(x) + sinh(x). In a similar vein, consider the combinatorial coun-
terpart of the identity cosh(x)2 − sinh(x)2 = 1, namely E2

even = 1+E2
odd. This holds

as an identity among L-species, but it is false as a B-species identity. While there are
two “unlabeled” E2

even-structures of size two, namely ({◦, ◦}, ∅) and (∅, {◦, ◦}), there
is a single unlabeled (1 +E2

odd)-structure of size two, namely ({◦}, {◦}). Continuing
with the L-species setting, we have

1 = E2
even − E2

odd

= (Eeven − Eodd)(Eeven + Eodd)

= (Eeven − Eodd) · E,
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which when composing with C yields 1 = (Se − So) · S. The multiplicative inverse
of S is the virtual species 1 − X, and hence Se − So = 1 − X. Applying this to
expression (1) for the species Alt in Example 2.5, we arrive at

Alt =
1

2

(
S + 1 +X

)
. (2)

Continuing with the topic of permutations, we present the following proposition.

Proposition 2.8. S = E + E ∗ S•.

Proof. Let n ≥ 0. We shall construct a bijection from S[n] to (E + E ∗ S•)[n]. Let
a permutation π ∈ S[n] be given. If π = 12 . . . n is the identity permutation, then
we map π to {1, 2, . . . , n}, the single element of E[n]. Assume that π has at least
one point that is not fixed. In this case we will have to map π to an element of
(E ∗ S•)[n]. Recall that, by definition of convolution,

E ∗ S• = E ⊙X ⊙ S•.

Now, let k be the largest integer such that 1, 2, . . . , k are fixed points in π. Note
that 0 ≤ k < n − 1. We interpret this maximal prefix of fixed points as the set
{1, 2, . . . , k} (an E-structure). Consider the remaining suffix of π. Remove k + 1
from the cycle it belongs to (this does not alter the number of cycles since k + 1 is
not a fixed point) and interpret k + 1 as a singleton (an X-structure). From what
remains of the suffix we form an S•-structure by pointing at the element π(k + 1).
Note that π(k + 1) > k + 1 by the choice of k.

Example 2.9. Below is an example of the bijection in the proof of Proposition 2.8.

1 2
3

7

9

4

5
6

8

10 7→

(
{1, 2}, {3},

7

9

4
5

6

8

10

)

its functional digraph: the directed graph with vertex set [n] and arcs i → π(i). The
vertex pointed at is black.

Let Alt denote the subspecies of S consisting of the odd permutations, which is the
complement of the alternating group in the sense that S = Alt+Alt. We have the
following corollary of Proposition 2.8, which will turn out to be useful when proving
Theorem 6.4.

Corollary 2.10. Alt = E ∗Alt•.

Proof. Let π be an odd permutation. Consider the image of π under the bijection
from the proof of Proposition 2.8. Removing a maximal prefix 1, 2, . . . , k of fixed
points from π does not alter the parity of π. On the other hand, deleting k+1 from its
cycle shortens that cycle by one and reverses its parity. It follows that the restriction
of this bijection to odd permutations proves our corollary. See Example 2.9, above,
for an example of this bijection.
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Example 2.11 (231-avoiding permutations). A permutation or linear order w =
w1w2 . . . wn on [n] contains 231 (as a pattern) if it contains a subsequence wiwjwk

that is order isomorphic to 231; that is, if wk < wi < wj . Otherwise, w is 231-
avoiding. It is well known that the number of 231-avoiding permutations of [n] is
given by the nth Catalan number,

(
2n
n

)
/(n + 1). As an illustration of the species

approach adopted in this article we shall now give a somewhat unorthodox proof of
this fact. Let F = S(231) be the L-species of 231-avoiding permutations, which is
a subspecies of S. Let ℓ be a nonempty totally ordered set and let w ∈ S[ℓ]. Then
w belongs to F [ℓ] if and only if there are totally ordered sets ℓ1 and ℓ2 such that
ℓ = ℓ1 ⊕ ℓ2 ⊕ 1, and w can be factored as w = umv, where u ∈ F [ℓ1], v ∈ F [ℓ2], and
m = max(ℓ). In other words, F is characterized be the following equation:

F = 1 + F ⊙X ⊙ F = 1 + F ∗ F.

Our goal is to show that an = |F [n]| is the nth Catalan number. Note that an =
F (n)(0), where F (n) is the nth derivative of F . Now, by the Leibniz rule,

F ′(x) = (F ′ ∗ F )(x) + a0F (x).

Differentiating this expression and, again, using the Leibniz rule, we obtain

F ′′(x) = (F ′′ ∗ F )(x) + a0F
′(x) + a1F (x).

Continuing this way we find that

F (n+1)(x) = (F (n+1) ∗ F )(x) +

n∑
i=0

aiF
(n−i)(x).

Note that (F (n+1) ∗ F )(0) = 0 and hence, by identifying coefficients in the above
identity when x = 0, we obtain a0 = 1 and

an+1 =
n∑

i=0

aian−i,

which is the usual recurrence for the Catalan numbers. We will present a kindred
recurrence for the number of 231-avoiding Cayley permutations in Proposition 6.10.

3 Cayley permutations

In the introduction we defined a Cayley permutation as a word w of positive integers
such that if a letter b appears in w then all positive integers a < b also appear in w.
Expressed differently, a Cayley permutation is a function w : [n] → [n] such that
Im(w) = [k] for some k ≤ n. To define the B-species of Cayley permutations we
have to generalize this a bit by allowing the domain to be any n element set. Thus,
a Cayley permutation on a finite set U is a function w : U → [n] such that |U | = n
and Im(w) = [k] for some k ≤ n. And we let Cay be the B-species with structures

Cay[U ] =
{
w ∈ [n]U : Im(w) = [k] for some k ≤ n

}
,

together with the transport of structure along a bijection σ : U → V defined via

Cay[σ](w) = w ◦ σ−1.
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(
KRNPkrnp
3 1 3 4 2 2 2 4

)
31342224

({R}, {k,r,n}, {K,N}, {P,p})

({2}, {5, 6, 7}, {1, 3}, {4, 8})

Cay[σ]

αU

Bal[σ]

αV

Figure 2: An instance of the compatibility between the transport of structures for
Cay and Bal described in Example 3.1.

For w ∈ Cay[n], we utilize one-line notation and write w = w1w2 . . . wn, where
wi = w(i). In this case, we say that w is of length n.

For example,

• Cay[1] = {1};

• Cay[2] = {11, 12, 21};

• Cay[3] = {111, 112, 121, 122, 123, 132, 211, 212, 213, 221, 231, 312, 321}.

For a finite set U , we define αU : Cay[U ] → Bal[U ] via

αU (w) = B1B2 . . . Bk, where k = | Im(w)| and Bi = w−1({i}).

This map is clearly bijective and hence |Bal[n]| = |Cay[n]|. It also follows (see
Example 2.4) that Cay(x) = Bal(x) = 1/(2 − ex). We shall see in Proposition 3.2
below that, via the bijections αU , the species Cay and Bal are in fact isomorphic.

Example 3.1. We wish to illustrate how the bijections αU respect the transport of
structure induced by Cay and Bal, a fact we will prove formally in Proposition 3.2.
Let U = [8] and V = {K,k,R,r,N,n,P,p}. Define a bijection σ : U −→ V by

σ =

(
1 2 3 4 5 6 7 8

KRNPkrnp

)
.

That is, σ(1) = K, σ(2) = R, σ(3) = N, etc. The action of the maps Bal[σ]◦αU and
αV ◦Cay[σ] on the Cay[U ]-structure w = 31342224 is illustrated by the commutative
diagram in Figure 2.

Proposition 3.2. As B-species, Cay = Bal.

Proof. Let σ : U → V be a bijection between finite sets U and V . We aim to show
that Figure 1 commutes for species Cay and Bal. Let w ∈ Cay[U ] with Im(w) = [k].
We see that (

αV ◦ Cay
)
[σ](w) = αV (Cay[σ](w))

= αV (w ◦ σ−1)

= (w ◦ σ−1)−1({1}) . . . (w ◦ σ−1)−1({k})
= Bal[σ](w−1({1})) . . . Bal[σ](w−1({k}))
= Bal[σ](αU (w))

=
(
Bal[σ] ◦ αU

)
(w).

12



4 Pattern avoidance in Cayley permutations

In this section, we will introduce pattern avoidance in the context of Cayley per-
mutations and ballots. In order to sensibly define pattern avoidance for Cayley
permutations we must restrict the domain to a totally ordered set, which allows us
to write Cayley permutations in one-line notation. One consequence of this is that all
species of pattern-avoiding Cayley permutations are L-species. Furthermore, since
there is a unique order preserving bijection between any pair of finite totally ordered
sets of the same cardinality we may, when convenient, assume that the underlying
total order is [n] with the standard order.

Consider the Cayley permutations w = w1w2 . . . wn ∈ Cay[n] and p = p1p2 . . . pk ∈
Cay[k]. We say that w contains p if there exists a subsequence wi1wi2 . . . wik with
i1 ≤ i2 ≤ . . . ≤ ik that is order isomorphic to p (i.e., for every a < b we have
wia < wib ⇔ pa < pb and wia = wib ⇔ pa = pb). If w does not contain a pattern p,
then we say that w avoids p.

Let Cay(p) be the L-species of p-avoiding Cayley permutations. The corresponding
structures are

Cay(p)[n] = {w ∈ Cay[n] : w avoids p}.

The transport of structure is inherited from Cay. We also define Bal(p)[n] to be the
image of Cay(p)[n] under the natural bijection between Cayley permutations and
ballots described earlier. It follows that Cay(p) = Bal(p) as L-species.

Example 4.1. Consider Cay(1k) for k ≥ 2, where 1k = 11 . . . 1 consists of k copies
of 1. A 1k-avoiding ballot has blocks of sizes at most k − 1. That is, blocks may be
any size between 1 and k − 1, and hence

Cay(1k) = Bal(1k) = L(E1 + E2 + · · ·+ Ek−1).

It follows that

Cay(1k)(x) = L(E1 + · · ·+ Ek−1)(x)

= L(E1(x) + · · ·+ Ek−1(x)) =

(
1−

k−1∑
i=1

xi

i!

)−1

.

We now extend the idea of Wilf equivalence [6] to Cayley permutations. We say that
two patterns p and q are (Wilf) Cayley-equivalent if |Cay(p)[n]| = |Cay(q)[n]| for
all n; equivalently, if Cay(p) = Cay(q) as L-species.

The standard reverse and complement maps on permutations are easily generalized
to Cayley permutations. Given a Cayley permutation w = w1 . . . wn, the reverse
map is defined via

r(w1 . . . wn) = wn . . . w1

and the complement map is given by

c(w1 . . . wn) = (max(w) + 1− w1) . . . (max(w) + 1− wn),

where max(w) = max{wi : i ∈ [n]}. Certainly, the reverse and complement maps are
bijections on Cay[n]. This implies that p, r(p), c(p), and (r ◦ c)(p) are all Cayley-
equivalent for a pattern p. The class generated by reverse and complement of a
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single pattern p is the symmetry class of p. Note that two patterns may be Cayley-
equivalent without being in the same symmetry class. Note also that there is no
counterpart to the inverse map on Cay[n], a reason for which Cayley-equivalence
does not correspond to the usual Wilf equivalence on permutations. For instance,
let p = 1342 and q = 1423. Then p and q are Wilf equivalent on permutations since
p = q−1. On the other hand, p and q are not Cayley-equivalent:

|Cay(1342)[7]| = 33712 ̸= 33710 = |Cay(1423)[7]|.

We will further explore this and other notions of equivalence in Section 8.

5 Patterns of length two

In this section, we will investigate Cayley permutations avoiding patterns of length
two and we start with the pattern 11. A Cayley permutation avoiding 11 is simply
a permutation. Or, in terms of ballots, a Bal(11)-structure is a ballot with singleton
blocks only. We also note that the pattern 11 is a special case of the pattern 1k

studied in Example 4.1, and that Cay(11) = L(E1) = L and Cay(11)(x) = 1/(1−x).

Next we consider the species Cay(21) = Bal(21). Note that one could easily obtain
the counting formula and corresponding generating series for Cay(12), but we have
opted for a species-first approach, in part to illustrate the utility of combinatorial
species. A nonempty ballot on [n] avoids 21 precisely when the element of its first
block form an initial segment [k] of [n] and the remaining blocks form a ballot that
also avoids 21. Letting F = Bal(21) this characterization is captured by the equation

F = 1 + E+ ⊙ F = 1 + E ∗ F.

Using induction it immediately follows that

F = 1 + 1 ∗
∑
k≥1

E∗k, (3)

in which E∗k = E ∗ · · · ∗ E is the convolution of k copies of E.

Lemma 5.1. For any k ≥ 1, we have E∗k = Ek−1E.

Proof. For ease of notation let k = 3. By definition of convolution,

E∗3 = E ⊙X ⊙ E ⊙X ⊙ E.

Consequently, an E∗3-structure on a totally ordered set ℓ is a 5-tuple

γ = (ℓ1, x1, ℓ2, x2, ℓ3) such that ℓ = ℓ1 ⊕ {x1} ⊕ ℓ2 ⊕ {x2} ⊕ ℓ3.

Clearly, γ is uniquely determined by the pair
(
{x1, x2}, ℓ1 ∪ ℓ2 ∪ ℓ3

)
, and this sets up

a bijection proving E∗3 = E2E. The general case is analogous.

Continuing with derivation (3) prior to this lemma, we find that

F = 1 + 1 ∗
∑
k≥1

E∗k

= 1 + 1 ∗ E
∑
k≥1

Ek−1 = 1 + 1 ∗ E2 = 1 +

∫
E2.

14



Proposition 5.2. Cay(21) = 1 +

∫
E2 = Eeven · E.

Proof. Let F = 1 +
∫
E2 and G = Eeven · E. We have already established that

Cay(21) = F . To show that F = G we note that F (0) = 1 = G(0), F ′ = E2, and

G′ = E′
evenE + EevenE

′ = EoddE + EevenE = E2.

Alternatively, we may prove F = G using an explicit bijection: Let ℓ be a finite
totally ordered set. Define αℓ : F [ℓ] → G[ℓ] as follows. For ℓ = ∅ let αℓ(∅) = (∅, ∅).
Assume ℓ is nonempty and let x = min(ℓ). An F -structure on ℓ is a pair of disjoint
sets (S, T ) such that S ∪ T = ℓ \ {x} and we define

αℓ(S, T ) =

{
(S, T ∪ {x}) if |S| is even,
(S ∪ {x}, T ) if |S| is odd.

It is easy to verify that αℓ indeed is a bijection.

Corollary 5.3. Cay(21)(x) = cosh(x)ex = 1
2(e

2x + 1).

On extracting the coefficient of xn/n! in 1
2(e

2x + 1) we find that∣∣Cay(21)[∅]∣∣ = 1 and
∣∣Cay(21)[n]∣∣ = 2n−1 for n ≥ 1.

We could of course have derived this more directly by noting that any 21-avoiding
Cayley permutation is weakly increasing and hence consists of a segment of 1s, fol-
lowed by a segment of 2s, followed by a segment of 3s, etc. Thus there are as many
21-avoiding Cayley permutations as there are integer compositions of n.

6 Patterns of length three

Next we will study Cayley permutations that avoid patterns of length three. It follows
from Example 4.1 that Cay(111) = L(E1 +E2) and Cay(111)(x) = 2/(2− 2x− x2).
Using a partial fraction decomposition of 2/(2 − 2x − x2) we may also derive the
following explicit counting formula for all n ≥ 0:

|Cay(111)[n]| = n! · (1 +
√
3)n+1 − (1−

√
3)n+1

2n+1
√
3

.

Although 112 and 212 are Cayley-equivalent as a consequence of the results proved
by Jeĺınek and Mansour on k-ary words [43] (see also Section 8), we will prove it
here independently by showing that Cay(112) = Cay(212) as L-species. We will first
provide a species equation for Cay(112).

Proposition 6.1. Cay(112)′ = L · Cay(112) + L · Cay+(112).

Proof. Let n ≥ 0. We shall verify the result in terms of ballots by exhibiting a
bijection from Bal(112)′[n] = Bal(112)[n + 1] to (L · Bal(112) + L · Bal+(112))[n].
Consider a ballot ϖ = B1B2 . . . Bk in Bal(112)[n + 1]. For any j ∈ [n + 1], each
block preceding the block containing j contains at most one value less than j. In
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particular, if the maximum value n + 1 belongs to the ith block, then all preceding
blocks must be singletons, say B1 = {a1}, B2 = {a2}, . . . , Bi−1 = {ai−1}. Note that
we may view a1a2 . . . ai−1 as an L-structure. Let B̃i = Bi \ {n + 1}. It is easy to
check that

ϖ 7−→

{(
a1a2 . . . ai−1, Bi+1 . . . Bk

)
if B̃i = ∅,(

a1a2 . . . ai−1, B̃iBi+1 . . . Bk

)
otherwise

is the sought bijection.

Theorem 6.2. Cay(112) = Alt′.

Proof. Clearly, Cay(112)[∅] = Alt′[∅] and hence it suffices to show that F = Alt′

satisfies the differential equation F ′ = L·(F+F+) = L·(2F−1) from Proposition 6.1.
Recall from equation (2) that Alt = (S + 1 + X)/2 = (L + 1 + X)/2 and hence
Alt′ = (1 + L′)/2. Finally, using L′ = L2, we get F ′ = Alt′′ = L3 = L · (2F − 1).

By the preceding theorem we have Cay(112) = Alt′ = (1 + L2)/2 and since L(x) =
1/(1− x), we arrive at the following result.

Corollary 6.3. Cay(112)(x) =
1

2

(
1 +

1

(1− x)2

)
=

x2 − 2x+ 2

2(x− 1)2
.

We now transition to 212-avoiding Cayley permutations.

Proposition 6.4. Cay(212) = 1 + E ∗ Cay(212) + E ∗ Cay(212)•.

Proof. Let n ≥ 0. For any species F we have E ∗F = E ⊙X ⊙F = E+ ⊙F . It thus
suffices to provide a bijection from Cay(212)[n] to(

1 + E+ ⊙ Cay(212) + E+ ⊙ Cay(212)•
)
[n]

For n = 0 we map the empty Cayley permutation to the empty set. Assume n > 0
and w ∈ Cay(212)[n]. Observe that the occurrences of the largest value m = max(w)
in w must occur as a single contiguous string. That is, we can write

w = w1 . . . wim. . .mwi+d+1 . . . wn,

where d is the number of occurrences of m in w and both w1 . . . wi and wi+d+1 . . . wn

are 212-avoiding Cayley permutations in their own right. The size of the E+-structure
will be d and its role is simply to keep track of the number of occurrences of m. We
consider two cases according to whether or not the contiguous string m. . .m occurs
on the far right. In the first case,

w 7−→
(
{1, . . . , d}, w1 . . . wi

)
.

In the second case, we can identify a distinguished position immediately to the right
of the contiguous string m. . .m:

w 7−→
(
{1, . . . , d}, w1 . . . wiw

•
j . . . wn

)
.

Having established an equation characterizing Cay(212) we shall show in Theorem 6.6
that Cay(212) = Alt′ satisfies that equation, but first a simple lemma.

Recall that Alt = S −Alt denotes the species of odd permutations.

16



Lemma 6.5. Alt = 1 +X +Alt.

Proof. This can be proved bijectively by fixing a transposition, say τ , and observing
that multiplication by τ reverses the parity. Alternatively, from equation (2) we see
that 2Alt = 1 +X + S = 1 +X +Alt+Alt and hence Alt = 1 +X +Alt.

Theorem 6.6. Cay(212) = Alt′.

Proof. If we let F = Cay(212), then Proposition 6.4 reads

F = 1 + E ∗ F + E ∗ F •. (4)

We shall prove that F = Alt′ satisfies this equation. Starting from the right-hand
side we have

1 + E ∗Alt′+E ∗ (Alt′)• = 1 + E ∗ (Alt′+X Alt′′)

= 1 + E ∗ (X Alt′)′

= 1 + E ∗ (Alt•)′

= (1 +X + E ∗Alt•)′ (by the Leibniz rule)

= (1 +X +Alt)′ (by Corollary 2.10)

= Alt′ (by Lemma 6.5),

which concludes the proof.

Corollary 6.7. Cay(212)(x) =
1

2

(
1 +

1

(1− x)2

)
=

x2 − 2x+ 2

2(x− 1)2
.

For n ≥ 1, the number of alternating permutations of [n] is n!/2 and since Cay(112) =
Cay(212) = Alt′, by Theorems 6.2 and 6.6, we immediately get the following counting
formula for Cay(112) and Cay(212).

Corollary 6.8. We have |Cay(112)[∅]| = |Cay(212)[∅]| = 1 and, for n ≥ 1,∣∣Cay(112)[n]∣∣ = ∣∣Cay(212)[n]∣∣ = 1

2
(n+ 1)!

Using the reverse and complement maps, we have the L-species identities

Cay(112) = Cay(221) = Cay(211) = Cay(122) and Cay(212) = Cay(121).

However, the species Cay(112) and Cay(212) are the same according to Theorems 6.2
and 6.6, which implies that all six of the patterns are Cayley-equivalent.

Birmajer, Gil, Kenepp, and Weiner [9] counted weak orderings subject to various
“stopping conditions”. In particular, they showed that the number of weak order-
ings of size n ≥ 1 subject to xi1 < xi2 = xi+3 is (n + 1)!/2. Translating this to
our terminology, they showed that |Cay(122)[n]| = (n + 1)!/2. Now, the reverse-
complement of 122 is 112, and hence the formula |Cay(112)[n]| = (n + 1)!/2 of
Corollary 6.8 was already known.

Let us now consider the species Cay(231). We wish to provide a geometric de-
composition of 231-avoiding Cayley permutations that has the same flavor as the
well-known recursive description of S(231). Our technique is similar to the one used
in Proposition 6.4 and it leads to an integral equation for Cay(231).
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Proposition 6.9. Cay(231) = 1 +X + (4Cay(231)− E) ∗ Cay(231)+.

Proof. Any nonempty w = w1w2 . . . wn ∈ Cay(231)[n] factors as

w = umax(w)v,

where wi = max(w) is the leftmost copy of max(w) in w, u = w1 . . . wi−1 is the prefix
of w preceding wi, and v = wi+1 . . . wn is the suffix of w succeeding wi. Note that
max(u) < max(w) by our choice of i ∈ [n]. Note also that max(u) ≤ min(v), or else
the triple max(u),max(w),min(v) would form an occurrence of 231 in w. Further,
both u and v are (order isomorphic to) 231-avoiding Cayley permutations. Now, any
w ∈ Cay(231)[n] falls into exactly one of the following cases:

1. w = ϵ, the empty Cayley permutation.

2. v = ϵ. That is, there is only one copy of max(w) and it is the last entry of w.
This includes the single letter Cayley permutation w = 1, where u = v = ϵ.

3. u = ϵ and v ̸= ϵ. In this case, either max(w) = max(v) or max(w) = max(v)+1.

4. u ̸= ϵ and v ̸= ϵ. Here, there are four sub-cases to be considered, each giving
rise to distinct Cayley permutations. In the first three, u and v are allowed
to be (order isomorphic to) any 231-avoiding Cayley permutations, while the
fourth case needs some additional care.

(a) min(v) = max(u) + 1 and max(w) = max(v) + 1;

(b) min(v) = max(u) + 1 and max(w) = max(v);

(c) min(v) = max(u) and max(w) = max(v) + 1;

(d) min(v) = max(u) and max(w) = max(v); here, the case where max(v) =
min(v) is forbidden since otherwise we would have max(u) = max(w),
which is impossible.

Let F = Cay(231). The above case analysis leads to the following equation

F = 1︸︷︷︸
1

+

2︷︸︸︷∫
F +

3︷ ︸︸ ︷
2

∫
F+ + 3F+ ∗ F+︸ ︷︷ ︸

4(a)+4(b)+4(c)

+ F+ ∗ (F − E)︸ ︷︷ ︸
4(d)

, (5)

where we have annotated the terms with the corresponding cases. Each term can
be straightforwardly derived using the techniques developed in this article. We omit
most of the details and only consider the last term, corresponding to case 4(d):

F+ ∗ (F − E) = F+ ⊙X ⊙ (F − E).

Consider w = umax(w)v ∈ Cay(231)[n] as above. In case 4(d), u is nonempty,
but otherwise unconstrained, which gives the F+ factor. The singleton max(w)
corresponds to the X factor. Further, v is nonempty and max(v) > min(v), resulting
in the F −E factor. The reason for subtracting E from F is that there is exactly one
Cayley permutation of fixed length and fixed underlying alphabet, where max(v) =
min(v), namely the constant sequence. Finally, the total contribution of 4(d) is
obtained as the ordinal product F+ ⊙ X ⊙ (F − E) of the three factors, and on
simplifying (5) we obtain the claimed equation.
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Recall that in Example 2.11 we explored the species F = S(231) of 231-avoiding
permutations. It satisfies F = 1 + F ∗ F and by repeated differentiation we derived
a familiar recursion for the Catalan numbers. We can apply the same technique to
the species F = Cay(231) of 231-avoiding Cayley permutations. Our starting point
is the equation F = 1 + X + (4F − E) ∗ F+ from the preceding proposition. By
repeated differentiation, and use of the Leibniz rule, we find that

F (n+1)(x) = Fn+1(x) ∗
(
4F (x)− E(x)

)
+

n−1∑
i=0

(
4F i(x)− E(x)

)
an−i,

where an = Fn(0) = |Cay(231)[n]| is the number of 231-avoiding Cayley permuta-
tions on [n]. Through identifying coefficients in the above identity when x = 0, we
obtain the recurrence relation presented below.

Proposition 6.10. Let an = |Cay(231)[n]| be the number of 231-avoiding Cayley
permutations. Then a0 = a1 = 1 and, for n ≥ 1, we have

an+1 =
n−1∑
i=0

(4ai − 1)an−i.

In 1985 Simion and Schmidt [64] gave a bijection between S(123)[n] and S(132)[n].
It is considered a classic result in the permutation patterns literature. Simion and
Schmidt presented their bijection as an algorithm, but it can also be stated in terms
of equivalence classes induced by positions and values of left-to-right minima as
follows [23]. Given a permutation w = w1 . . . wn, define

lmin(w) = {(i, wi) : wj > wi for every j < i}.

Further, let the equivalence class of w be the set of permutations w′ where lmin(w′) =
lmin(w). Each equivalence class defined this way contains exactly one permutation u
avoiding 123 and one permutation v avoiding 132; Simion-Schmidt’s bijection is the
mapping u 7→ v. More explicitly, the entries of u and v are uniquely determined as
follows. Let w ∈ S[n]. For i = 1, 2, . . . , n, if (i, a) ∈ lmin(w), then let ui = vi = a.
Otherwise:

• Let ui be equal to the largest letter in [n] that has not been used before.

• Let vi be equal to the smallest letter in [n] that has not been used before and
is greater than all the letters used thus far.

Picking the largest letter not used at every step guarantees that the resulting permu-
tation u avoids 123; indeed, a permutation avoids 123 if and only if the entries that
are not left-to-right minima form a decreasing sequence. Similarly, picking the small-
est letter not used ensures that v avoids 132. Finally, the additional constraint that
the letter picked at every step is greater than all the letters seen before ensures that
this construction gives the desired set of left-to-right minima positions and values
lmin(u) = lmin(v).

As the reader may have guessed, we can modify the Simion-Schmidt construction to
obtain a bijection between Cay(123)[n] and Cay(132)[n] for n ≥ 0. Given w ∈ Cay[n],
let

wlmin(w) = {(i, wi) : wj ≥ wi for every j < i}
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be the set of weak left-to-right minima positions and values of w. Further, let the
filling of w be the multiset of its letters that are not weak left-to-right minima

fill(w) = {wi : (i, wi) /∈ wlmin(w)}.

Now, define the equivalence class of w as the set of Cayley permutations w′ ∈ Cay[n],
where wlmin(w′) = wlmin(w) and fill(w′) = fill(w). Once again, we shall see
that each equivalence class defined this way contains exactly one Cayley permutation
u ∈ Cay(123)[n] and one Cayley permutation v ∈ Cay(132)[n], which are defined
as follows. Let w ∈ Cay[n]. For i = 1, 2, . . . , n, if (i, a) ∈ wlmin(w), then let
ui = vi = a. Otherwise:

• Let ui be equal to the largest letter in fill(w) that has not been used before.

• Let vi be equal to the smallest letter in fill(w) that has not been used before
and is (strictly) greater than all the letters used thus far.

The additional requirement that fill(u) = fill(v) is necessary as otherwise, due
to the possibility of having repeated entries, there could be more than one 123-
avoiding Cayley permutation or more than one 132-avoiding Cayley permutation
with the same positions and values of weak left-to-right minima. To illustrate this
construction, let

w = 7 7 9 8 5 9 9 5 6 7 4 1 2 6 3 1 3 3,

where the underscored entries are the weak left-to-right minima of w. We have:

wlmin(w) = {(1, 7), (2, 7), (5, 5), (8, 5), (11, 4), (12, 1), (16, 1)};
fill(w) = {2, 3, 3, 3, 6, 6, 7, 8, 9, 9, 9}.

To obtain the only 123-avoiding Cayley permutation u in the equivalence class of w,
we keep the same positions and values of weak left-to-right minima and arrange the
letters of fill(w) in weakly decreasing order:

u = 7 7 9 9 5 9 8 5 7 6 4 1 6 3 3 1 3 2.

Finally, the corresponding 132-avoiding Cayley permutation is

v = 7 7 8 9 5 6 6 5 7 9 4 1 2 3 3 1 3 9.

To see that v avoids 132, suppose for a contradiction that there are three entries
vi, vj , vk with i < j < k and vi < vk < vj . Without loss of generality, we can
assume that (i, vi) ∈ wlmin(v). Note that (j, vj) and (k, vk) are not in lmin(v). In
particular, both vj and vk are in the filling of v, which contradicts vk < vj since the
procedure defined above should pick the smaller entry vk before vj .

Using the reverse and complement maps, together with the extension of the Simion-
Schmidt bijection to Cayley permutations shown above, it follows that all permu-
tations in S[3] = {123, 321, 312, 213, 132, 231} are Cayley-equivalent. An alternative
way to obtain this result consists of combining results by Chen, Dai and Zhou [20]
and Kasraoui [44] to obtain the following ordinary generating series for any p ∈ S[3]:

∑
n≥0

∣∣Cay(p)[n]∣∣xn =
1

2
+

1

1 +
√
1− 8x+ 8x2

. (6)
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We also have the explicit formula [44, Proposition 1.1]:

|Cay(p)[n]| =
n∑

k=1

k∑
j=1

(−1)k−j

(
k

j

)
|[j]n(p)|. (7)

The number of p-avoiding words over an alphabet of k letters was determined by
Burstein [10, Theorem 3.2]:

|[k]n(p)| = 2n−2(k−2)
k−2∑
m=0

k−2∑
j=m

Cj

(
2(k − 2− j)

k − 2− j

)(
n+ 2m

n

)
, (8)

where Cj is the jth Catalan number. Combining formulas (7) and (8) leads to a
rather unwieldy quadruple sum for |Cay(p)[n]|. Luckily there is a more compact
way of expressing the result. Birmajer et al. [9] enumerated weak orderings subject
to the “stopping condition” xi1 < xi2 < xi3 . In our terminology they showed that

∣∣Cay(123)[n]∣∣ = n∑
j=0

(−1)j2n−j−1

(
n− j

j

)
Cn−j (9)

for n ≥ 1, where Cn is the nth Catalan number.

The results from Sections 5 and 6 are summarized in Table 1.

7 Primitive Cayley permutations

A Cayley permutation w = w1 . . . wn over [n] is said to be primitive if it is nonempty
(n ≥ 1) and wi ̸= wi+1 for 1 ≤ i ≤ n−1. That is, a primitive Cayley permutation has
no “flat steps”. Under the designation multipermutations, primitive Cayley permu-
tations have figured in the work of Lam and Pylyavskyy [48], as well as in the work
of Marberg [52]. We let Prim denote the L-species of primitive Cayley permutations.

Lemma 7.1. Cay = 1 +
∫
(E · Prim′).

Proof. Let F = 1+
∫
(E ·Prim′) and let n be a nonnegative integer. We shall define

a bijection α : F [n] → Cay[n]. Since there is a unique F -structure on the empty set,
which can be mapped to the empty Cayley permutation, we may assume that n > 0.
Now, an F -structure on [n] is an (E·Prim′)-structure on [n]\{1} = {2, 3, . . . , n}. Such
a structure is a pair (S, v), where S is a subset of {2, 3, . . . , n} and v is a primitive
Cayley permutation on 1 ⊕ T = {1} ∪ T with T = {2, 3, . . . , n} \ S. Let k be the
number of letters of v and write v = v1v2 . . . vk. Then α(v) = w = w1w2 . . . wn is the
Cayley permutation obtained from filling n slots as follows. Write down the letters
v1, v2, . . . , vk of v on the slots belonging to T . Note that w1 = v1. Moving from
left to right, fill in the vacant slots by duplicating the letter to its left. For instance,
let S = {2, 3, 7} and v = 325154. We start by filling the slots {1, 4, 5, 6, 8, 9} with
the letters of v, obtaining 3 2 5 1 5 4, then we fill in the vacant slots and arrive
at w = 333251154. It is easy to see how to reverse this process and thus α is a
bijection.

Theorem 7.2. Prim′ = Cay2.
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Pattern Species Series Enumeration (n ≥ 1) OEIS

11 L
1

1− x
n! A000142

12

Eeven · E e2x + 1

2
2n−1 A011782

21

111 L(E1 + E2)
2

2− 2x− x2
n! · (1 +

√
3)n+1 − (1−

√
3)n+1

2n+1
√
3

A080599

212

Alt′
x2 − 2x+ 2

2(x− 1)2
(n+ 1)!

2
A001710

121

112

211

221

122

123

n∑
j=0

(−1)j2n−j−1

(
n− j

j

)
Cn−j A226316

132

213

231

321

312

Table 1: Results for patterns of lengths two and three.
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Proof. Differentiating the equation given in Lemma 7.1 yields Cay′ = E ·Prim′. Next
we solve for Prim′ by multiplying by the inverse of E. It is the virtual species

E−1 = (1 + E+)
−1 =

∑
k≥0

(−1)kEk
+.

Thus, an E−1-structure is a ballot such that if it has an even number of blocks it is
considered positive, while if it has an odd number of blocks it is considered negative.
Continuing with our derivation we get

Prim′ = E−1 · Cay′

= E−1 · Bal′

= E−1 · (L(E+))
′

= E−1 · E′
+ · L2(E+)

= L2(E+)

= Bal2

= Cay2 .

The OEIS entry for the coefficients of Cay2(x) is A005649.

A consequence of Lemma 7.1 is Cay′ = E ·Prim′. Inspired by this identity, we more
generally say that if two species F and G are related by F (0) = 1, G(0) = 0, and

F ′ = E ·G′,

then G is the species of primitive F -structures. For L-species, this is equivalent to

F = 1 +

∫
(E ·G′).

Examples include:

• Primitive Cay is
∫
Cay2 (above).

• Primitive Par is
∫
Par (similar to above).

• Primitive (modified) ascent sequences are nonempty (modified) ascent sequences
with no flat steps [14, 25].

• Primitive S is
∫
(Der+Der′) =

∫
Der+Der+ as follows from differentiating

S = E ·Der, in which Der is the species of derangements. Alternatively, Claes-
son [22] proved that primitive permutations are the integral of those avoiding
the Hertzsprung pattern 12.

The equation F ′ = E ·G′ yields the formula

|F [n]| =
n∑

j=1

(
n− 1

j − 1

)
|G[j]| for n ≥ 1, (10)
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where |F [0]| = 1. Similarly, the equation G′ = E−1 · F ′ yields the formula

|G[n]| =
n∑

j=1

(−1)n−j

(
n− 1

j − 1

)
|F [j]| for n ≥ 0. (11)

Let Prim(p) be the species of primitive Cayley permutations avoiding the pattern
p. The proof of the following proposition is almost identical to that of Lemma 7.1
and we omit the details. Note, however, that it is crucial for p to be primitive.
Otherwise, an occurrence of p could be created in the process of duplicating the
letters of a Prim(p)′-structure.

Proposition 7.3. If p is a primitive Cayley permutation, then

Cay(p) = 1 +

∫
(E · Prim(p)′)

and

Prim(p) =

∫
(E−1 · Cay(p)′).

For instance, Cay(21)′ = E2 by Proposition 5.2 and hence

Prim(21) =

∫
(E−1 · Cay(21)′) =

∫
E = E+.

This should come as no surprise since, for each n ≥ 1, the only primitive 21-avoiding
Cayley permutation on [n] is the identity permutation 12 . . . n.

For another instance, 212 is a primitive pattern and Cay(212) = Alt′ by Theorem 6.6.
Thus Prim(212) =

∫
(E−1L3) and the corresponding generating series is

Prim(212)(x) =

∫ x

0

e−t

(1− t)3
dt

= x+ 2 · x
2

2!
+ 7 · x

3

3!
+ 32 · x

4

4!
+ 181 · x

5

5!
+ 1214 · x

6

6!
+ · · ·

whose coefficients form sequence A000153 in the OEIS.

Since any permutation is a primitive Cayley permutation, Proposition 7.3 applies
whenever the pattern p is a permutation. Consider p = 231, or any other permutation
in S[3]; they are all Cayley-equivalent by the work in Section 6. To calculate

Prim(231)(x) =

∫ x

0
e−tCay(231)(t) dt (12)

we would need to know Cay(231)(x), and it may be possible to find an expression for
Cay(231)(x) by solving the equation in Proposition 6.9, but we have failed to do so.
It is, however, easy to calculate the numbers

∣∣Cay(231)[n]∣∣; e.g., using formula (9).
The result is sequence A226316:

1, 1, 3, 12, 56, 284, 1516, 8384, 47600, 275808, 1624352, 9694912, . . .

Using equation (11) we may calculate the corresponding numbers
∣∣Prim(231)[n]

∣∣ for
primitive Cayley permutations. They turn out to be

0, 1, 2, 7, 28, 121, 550, 2591, 12536, 61921, 310954, 1582791, . . .
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and match sequence A010683, whose ordinary generating series is the square of that
for the Schröder–Hipparchus numbers (A001003), shifted by one. We have arrived
at an educated guess:

∑
n≥0

∣∣Prim(231)[n]
∣∣xn = x

(
2

1 + x+
√
1− 6x+ x2

)2

. (13)

Can we prove this? Yes, but first we need to translate the relationship (12) for the
exponential generating series to a relationship between ordinary generating series.
For this discussion, let a0, a1, a2, . . . be a sequence of numbers and let A(x) and Â(x)
be the corresponding exponential and ordinary generating series. Furthermore, let
b0, b1, b2, . . . be another sequence of numbers and define B(x) and B̂(x) in the same
manner. The integral “transform”, A(x) 7→

∫ x
0 A(t) dt, corresponds to a shift of the

coefficients, an 7→ an−1, which in turn corresponds to Â(x) 7→ xÂ(x). The derivative,
A(x) 7→ A′(x), gives a shift in the other direction, an 7→ an+1, which corresponds
to Â(x) 7→ (Â(x) − 1)/x. Finally, the so-called inverse binomial transform, an =∑n

j=0(−1)n−j
(
n
j

)
bk, or B(x) = e−xA(x), corresponds to Â(x) = B̂

(
x/(1+x)

)
/(1+x).

Putting this all together we can translate equation (12) and the result is

∑
n≥0

∣∣Prim(231)[n]
∣∣xn =

x

1 + x

1
t

∑
n≥0

∣∣Prim(231)[n]
∣∣tn − 1


t= x

1+x

=
1 + x

1 + x+
√
1− 6x+ x2

− 1

2
,

where we have used (6) to calculate the explicit expression. It is easy to verify that
this answer is consistent with our guess (13).

Despite its simplicity, we could not find a bijective proof of the species equality
Prim′ = Cay2 of Theorem 7.2. The interplay between Prim′ and Cay is not limited
to this equality. Indeed, we also conjecture the following two equalities.

Conjecture 7.4. For all n ≥ 1, we have

1

2
|Prim′[n]| = 1

n

∑
w∈Cay[n]

n∑
i=1

wi =
∑

w∈Cay[n]

∑
i∈fix(w)

i,

where fix(w) = {i : wi = i} is the set of fixed points of w.

8 Wilf equivalences

Recall from Section 4 that two Cayley permutations p and q are Cayley-equivalent
if |Cay(p)[n]| = |Cay(q)[n]| for every n ≥ 0. The following proposition summarizes
the Cayley-equivalence results from Section 6.

Proposition 8.1. Cayley-equivalence partitions patterns of length three into the
following three classes:

• {111};
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• {112, 121, 122, 211, 212, 221};

• {123, 132, 213, 231, 312, 321}.

Jeĺınek and Mansour [43] considered two alternative notions of equivalence on k-ary
words: strong (word) equivalence and word equivalence. We define them below, to-
gether with their natural counterparts on Cayley permutations. We also introduce an
analogue to Cayley-equivalence on k-ary words. We expand a bit on the topic of Wilf
equivalences on words and Cayley permutations by relating some of the equivalences
defined this way. Finally, we state some open problems for future investigation.

Let the content of a word be the multiset of its letters. Further, denote by Cayk(p)[n]
the set of Cayley permutations over [n] that avoid p and whose maximum value is
equal to k. Two Cayley permutations p and q are

• strong-word-equivalent (p ∼sw q) if for every k, n there is a bijection between
[k]n(p) and [k]n(q) that preserves the content;

• word-equivalent (p ∼w q) if |[k]n(p)| = |[k]n(q)| for every k, n;

• endo-equivalent (p ∼e q) if |[n]n(p)| = |[n]n(q)| for every n,

where “endo” is short for endofunction. Similarly, p and q are

• strong-Cayley-equivalent (p ∼sc q) if for every k, n there is a bijection between
Cayk(p)[n] and Cayk(q)[n] that preserves the content;

• Cayley-max-equivalent (p ∼cm q) if |Cayk(p)[n]| = |Cayk(q)[n]| for every k, n;

• Cayley-equivalent (p ∼c q) if |Cay(p)[n]| = |Cay(p)[n]| for every n.

Clearly, strong-word-equivalence implies word-equivalence, which in turns implies
endo-equivalence. Similarly, strong-Cayley-equivalence implies Cayley-max-equival-
ence, which in turn implies Cayley-equivalence. Furthermore, Kasraoui [44, Propo-
sition 1.1] showed that if p and q are permutations and p ∼w q, then p ∼c q. We
shall prove that strong-word-equivalence coincides with strong-Cayley-equivalence,
and that word-equivalence coincides with Cayley-max-equivalence. To do that, let
us consider the following standardization map. Let w ∈ [n]n and let A be a subset of
[n] with |A| = | Im(w)|. Then stdA(w) is the word obtained by replacing each copy
of the ith smallest letter of w with the ith smallest element of A. As an example,
let w = 337217813 ∈ [9]9 and let A = {2, 5, 6, 7, 9}. Then stdA(w) = 667527926.
By choosing A = [k] with k = | Im(w)|, we obtain a Cayley permutation stdA(w)
whose maximum value is equal to k. Moreover, the standardization map preserves
pattern avoidance and containment; more explicitly, for any pattern p we have that w
contains p if and only if stdA(w) contains p.

Lemma 8.2. For each Cayley permutation p and for each k, n ≥ 0, we have

|[k]n(p)| =
k∑

i=0

(
k

i

)
|Cayi(p)[n]| (14)

and

|Cayk(p)[n]| =
k∑

i=0

(−1)k−i

(
k

i

)
|[i]n(p)|. (15)
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Proof. Let n, k ≥ 0. For any given i, the map w 7→
(
Im(w), std[i](w)

)
is a bijection

{
w ∈ [k]n(p) : | Im(w)| = i

}
−→

(
[k]

i

)
×
{
w ∈ Cayi(p)[n] : max(w) = i

}
.

Its inverse is given by (A, v) 7→ stdA(v). Thus,

∣∣[k]n(p)∣∣ =

k∑
i=0

∣∣{w ∈ [k]n(p) : | Im(w)| = i
}∣∣ =

k∑
i=0

(
k

i

)∣∣Cayi(p)[n]∣∣,
proving equation (14). This relation between the numbers |Cayi(p)[n]| and |[k]n(p)|
can easily be inverted to obtain (15). Indeed, letting A(x) =

∑
k≥0 |Cay

k(p)[n]|xk/k!
and B(x) =

∑
k≥0 |[k]n(p)|xk/k!, equation (14) amounts to B(x) = exA(x), or,

equivalently, A(x) = e−xB(x), which gives equation (15).

Proposition 8.3. Let p and q be Cayley permutations. Then

p ∼w q ⇐⇒ p ∼cm q.

Proof. If p ∼w q, then |[i]n(p)| = |[i]n(q)| for every i and thus p ∼cm q by equa-
tion (15). Similarly, if p ∼cm q, then |Cayk(p)[n]| = |Cayk(q)[n]| for every k, and
p ∼w q by equation (14).

Proposition 8.4. Let p and q be Cayley permutations. Then

p ∼sw q ⇐⇒ p ∼sc q.

Proof. Suppose first that p ∼sw q. That is, for each n, k there is a content-preserving
bijection

fk,n : [k]n(p) 7−→ [k]n(q).

Then, we obtain a content-preserving bijection gk,n between Cayk(p)[n] and Cayk(q)[n]
by simply letting gk,n be the restriction of fk,n to the subset Cayk(p)[n] of [k]n(p).
This proves p ∼sc q. To prove the converse implication, suppose that p ∼sc q.
Equivalently, for each n, k we have a content-preserving bijection

gk,n : Cayk(p)[n] 7−→ Cayk(q)[n].

Then we define a content-preserving bijection fk,n from [k]n(p) to [k]n(q) by letting

fk,n(w) =
(
stdIm(w) ◦ gj,n ◦ std[j]

)
(w),

where j = | Im(w)|. In other words, fk,n(w) is obtained by first standardizing w
under std[j], then applying the suitable content-preserving bijection gj,n, and finally
applying the inverse standardization (i.e., stdIm(w)) to obtain a word that has the
same content as w. Or, even less formally, by applying gj,n to w pretending that the
numbers that appear in w are 1, 2, . . . , j. It is easy to see that fk,n preserves the
content, as well as the avoidance of p. The proof that fk,n is a bijection is left to the
reader.

We end this section with a list of open problems. Let p and q be two Cayley permu-
tations of the same length. Can we prove or refute any of the following conjectures?
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Conjecture 8.5. If p ∼cm q, then p ∼sc q.

Jeĺınek and Mansour [43] showed that strong-word-equivalence and word-equivalence
coincide on patterns of length at most six. By Propositions 8.3 and 8.4, Conjec-
ture 8.5 holds up to length six.

Conjecture 8.6. If p ∼c q, then p ∼cm q.

The smallest candidate for a counterexample to Conjecture 8.6 is the pair p = 13442
and q = 14233. Here, p ̸∼cm q since e.g., |Cay5(p)[9]| = 742943 ̸= 742944 =
|Cay5(q)[9]|. If the conjecture is true, then |Cay(p)[n]| and |Cay(q)[n]| will differ for
some n. We have, however, checked that |Cay(p)[n]| = |Cay(q)[n]| for n ≤ 9.

It is easy to see that if max(p) ̸= max(q), then p ̸∼cm q. Indeed, suppose that
max(p) = m < max(q), for p, q ∈ Cay[n]. Then there is only one Cayley permutation
in Caym[n] that contains p, namely p itself; on the other hand, no Cayley permutation
in Caym[n] contains q since we assumed max(q) > m. Thus,

|Caym(p)[n]| = |Caym[n]| − 1 < |Caym[n]| = |Caym(q)[n]|,

showing that p ̸∼cm q. Since p ∼sc q implies p ∼cm q, the same property holds for
strong-Cayley-equivalence. What about Cayley-equivalence?

Conjecture 8.7. If p ∼c q, then max(p) = max(q).

Finally, we conjecture that max(p) ≤ max(q) turns into the opposite inequality for
the number of Cayley permutations avoiding the two patterns.

Conjecture 8.8. If max(p) ≤ max(q), then |Cayn(p)| ≥ |Cayn(q)|.
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[42] Vı́t Jeĺınek, Toufik Mansour, and Mark Shattuck. On multiple pattern avoiding
set partitions. Advances in Applied Mathematics, 50(2), 2013.
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