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Abstract

An adjacent q-cycle is a natural generalization of an adjacent trans-
position. We show that the number of adjacent q-cycles in a permutation
maps to the sum of occurrences of two mesh patterns under Foata’s fun-
damental transformation. As a corollary we resolve Conjecture 3.14 in
the paper “From Hertzprung’s problem to pattern-rewriting systems” by
the first author.

Let q be a positive integer. Following Brualdi and Deutsch [2], define an adjacent
q-cycle in a permutation as a cycle of the form

(i, i+ 1, . . . , i+ q − 1).

In particular, an adjacent 1-cycle is a fixed point and an adjacent 2-cycle is
more commonly known as an adjacent transposition. Brualdi and Deutsch
showed, among other things, that if aq(n, k) is the number of permutations of
{1, 2, . . . , n} that—when expressed as a product of disjoint cycles—have exactly
k adjacent q-cycles, then

aq(n, k) =

⌊n/q⌋∑
j=k

(−1)k+j

(
j

k

)
(n− (q − 1)j)!

j!
.

Foata’s fundamental transformation [4] bijectively maps a permutations π with
k cycles to a permutation σ with k left-to-right minima by writing each cycle of
π so that its leftmost element is the smallest, sorting the cycles in descending
order with respect to their first element, and reading the resulting permutation
σ as a word from left to right. For instance,

π = 213967548 = (5, 6, 7)(4, 9, 8)(3)(1, 2) 7→ σ = 567498312.

Consider the effect of this transformation on a fixed point (an adjacent 1-cycle)
such as 3 in the permutation π above. If it is not the smallest element, then it
is mapped to a left-to-right minimum in σ that is directly followed by another
left-to-right minimum. In terms of mesh patterns [1] it is an occurrence of

s1 =



Indeed, the shading to the southwest of the two points guarantees that they
are left-to-right minima, while the shading in the column between the points
guarantees that they are adjacent. If, on the other hand, the fixed point is the

smallest element, then it gets mapped to an occurrence of r1 = .

Similarly, let us consider an adjacent transposition (i, i+1) in π. Depending on
whether or not (i, i+ 1) is the rightmost cycle of π (i.e., whether or not i = 1)
it is mapped to an occurrence of one of the patterns

r2 = or s2 =

in σ. For instance, (1, 2) in the example permutation π corresponds to an
occurrence of r2 in σ. Proceeding with adjacent 3-cycles we have

r3 = and s3 =

and the cycle (5, 6, 7) in π corresponds to a unique occurrence of s3 in σ.

It should now be clear how to define rq and sq for any q ≥ 1, and that the
following theorem is true.

Theorem 1. Assume that π 7→ σ under Foata’s fundamental transformation.
For any q ≥ 1, the number of adjacent q-cycles in π is equal to the sum of the
number of occurrences of rq and sq in σ.

The following corollary provides a generating function identity conjectured by
the first author [3, Conjecture 3.14].

Corollary 2. We have

∑
n≥0

|Sn(p)|xn =
∑
m≥0

m!

(
x

1 + x2

)m

, where p =

and Sn(p) denotes the set of permutations avoiding the mesh pattern p.

Proof. Let us denote the right-hand side of the conjectured identity by F (x), and
let A(x) be the generating function for the number of permutations of [n] whose
disjoint cycle decompositions have no adjacent transpositions. In other words,
the coefficient of xn in A(x) is a2(n, 0); these numbers form sequence A177249
in the OEIS [6]. Brualdi and Deutsch [2] have shown that A(x) satisfies the
differential equation

x2(1 + x2)A′(x)− (1 + x2)(1− x− x2)A(x) + 1− x2 = 0, A(0) = 1.

Term-wise differentiation yields

d

dx

(
F (x)

1 + x2

)
=

(1− x− x2)F (x)− 1 + x2

x2(1 + x2)
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and using this it is easy to verify that F (x)/(1+x2) satisfies the same differential
equation as A(x). It thus suffices to show that

∑
n≥0 |Sn(p)|xn = (1+x2)A(x),

or, equivalently,

|Sn(p)| = a2(n, 0) + a2(n− 2, 0) for n ≥ 2. (1)

As a special case of Theorem 1 we find that Foata’s fundamental transformation
provides a one-to-one correspondence between permutations without adjacent
transpositions and permutations that avoid r2 and s2. By symmetry (reverse
followed by inverse) we may equivalently consider permutations avoiding the
two patterns

r′2 = and s′2 =

By the Shading lemma [5], the pattern p is coincident with the pattern s′2, in
the sense that Sn(p) = Sn(s

′
2) for all n ≥ 0. By conditioning on whether a

permutation avoiding s′2 also avoids r′2 or contains r′2 we find that

Sn(p) = Sn(r
′
2, s

′
2) ∪

(
Con(r

′
2) ∩ Sn(s

′
2)
)
,

where the union is disjoint and Con(r
′
2) denotes the set of permutations that

contain r′2. Note that a permutation π contains r′2 and avoids s′2 precisely when
it is the direct sum π = 21⊕σ of the permutation 21 and a permutation σ that
avoids r′2 and s′2. This establishes equation (1) and concludes the proof.

As above, assume that π 7→ σ under Foata’s fundamental transformation. A
direct consequence of the definition of this map is that the number of cycles of
π equals the number of left-to-right minima of σ, which in turn is the number
of occurrences of the mesh pattern

in σ. We have shown that the statistic “number of fixed points” translates to
the mesh pattern statistic

+

and more generally that the number of adjacent q-cycles translates to rq + sq.
A fixed point π(i) = i of π is said to be strong if j < i ⇒ π(j) < π(i) and
j > i ⇒ π(j) > π(i); see [7, Ex. 1.32b]. In term of mesh patterns, strong
fixed points are occurrences of in π, and it is easy to see that they map
to occurrences of in σ, sometimes called skew strong fixed points [1]. What
other properties of the cycle structure of π can be neatly expressed in terms
of occurrences of mesh patterns in σ? Are the examples presented here special
cases of a more general phenomena?
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