
Fishburn trees

Giulio Cerbai Anders Claesson

Abstract

The in-order traversal provides a natural correspondence between binary
trees with a decreasing vertex labeling and endofunctions on a finite set. By
suitably restricting the vertex labeling we arrive at a class of trees that we call
Fishburn trees. We give bijections between Fishburn trees and other well-known
combinatorial structures that are counted by the Fishburn numbers, and by
composing these new maps we obtain simplified versions of some of the known
maps. Finally, we apply this new machinery to the so called flip and sum
problems on modified ascent sequences.

1 Introduction

The coefficients of the elegant power series

∑
n≥0

n∏
k=1

(
1− (1− x)k

)
= 1 + x+ 2x2 + 5x3 + 15x4 + 53x5 + · · ·

are known as the Fishburn numbers, which is sequence A022493 in the OEIS [22].
Claesson and Linusson [9] named them so in honor of Peter C. Fishburn (1936–2021),
who pioneered, among other things, the study of interval orders [15, 16]. The last
decade has seen a lot of interest in combinatorial structures related to this counting
sequence. The starting point was the 2010 paper [2] by Bousquet-Mélou, Claesson,
Dukes and Kitaev, which gave one-to-one correspondences between certain, appar-
ently unrelated, objects: (2+2)-free posets; the set of permutations avoiding a certain
bivincular pattern, now called Fishburn permutations; Stoimenow matchings [23]; and
ascent sequences. They also provided an algorithm to transform an ascent sequence
into its modified version, and showed that the latter is closely related to the level
distribution of the corresponding (2+2)-free poset. Later, Dukes and Parviainen [13]
found a bijection between ascent sequences and Fishburn matrices [16], that is, up-
per triangular matrices with nonnegative integer entries whose every row and column
contains at least one positive entry. All these objects are enumerated by the Fishburn
numbers, and for this reason we shall refer to them as Fishburn structures.

We will define two new structures of this kind, namely Fishburn trees and Fishburn
covers. The former are decreasing binary trees satisfying some simple conditions on
their labeling, while the latter encode the trees as an ordered collection of multisets.
There are surprisingly straightforward bijections relating them to modified ascent
sequences, Fishburn matrices and (2+2)-free posets. By composing these new maps
we obtain simplified versions of those previously known in the literature. In this
sense, Fishburn trees and Fishburn covers provide a transparent encoding of other



Fishburn structures, and we may regard them as central objects from which the
others are derived. For instance, the Dukes and Parviainen bijection [13] is obtained
by composing the map between modified ascent sequences and Fishburn trees with the
map between Fishburn trees and Fishburn matrices. As an application, we provide a
more direct solution to the flip and sum problems (defined below).

Our work fits into an active line of research [8, 10, 11, 12, 14, 17, 18, 19, 20, 24]
that explores the relations between Fishburn structures by analyzing how statistics
and operations that are natural on a certain object are transported to the others. In
this context, the following two problems, originally proposed by Dukes and Parvi-
ainen [13], are particularly relevant.

• The flip problem. Duality acts as an involution on (2+2)-free posets. On
Fishburn matrices, this is equivalent to reflecting a matrix in its antidiagonal.
What is the corresponding operation on ascent sequences?

• The sum problem. The result of adding two Fishburn matrices is another Fish-
burn matrix. What is the corresponding operation on ascent sequences?

Note that the Dukes and Parviainen bijection between ascent sequences and Fishburn
matrices could be used to compute the flip and sum operations. For instance, if x is
an ascent sequence, one could first determine the Fishburn matrix A corresponding
to x, then compute flip(A) by reflecting A in its antidiagonal, and finally go back
to the desired ascent sequence by applying the Dukes and Parviainen bijection once
again. This map is, however, defined by a rather intricate recursive construction that
makes this approach opaque. The goal is to find a more transparent solution. A first
answer to the flip and sum problems was proposed by Ying and Yu [25]. Roughly
speaking, Ying and Yu encode Fishburn matrices as, what they call, M -sequences,
to then define a bijection between ascent sequences and M -sequences of Fishburn
matrices. The flip and sum are computed on M -sequences, and the corresponding
ascent sequences are once again obtained by composition. Unfortunately, this solution
is rather cryptic, mainly due to the high amount of technicalities, and the lack of a
geometric description of the construction. We believe that we have found a more
transparent construction; a key in making the construction more transparent is to
view it in terms of modified ascent sequences rather that plain ascent sequences.

In Section 2 we introduce a family of decreasing binary trees called endotrees. We
show that endotrees bijectively map to endofunctions via the in-order traversal of
the tree. To describe the inverse of this bijection, we define the max-decomposition
of an endofunction and use it to recursively build an endotree. Similarly, Cayley
permutations are in one-to-one correspondence with endotrees whose labels form an
interval, we call them regular endotrees.

In Section 3 we introduce Fishburn trees as the set of regular endotrees satisfying an
additional property. By decomposing a Fishburn tree in maximal right paths, each
one labeled with a unique integer, we are able to encode it as an ordered collection
of multisets, the Fishburn cover. The main result of this section, Theorem 3.9, is a
bijection from Fishburn covers to Fishburn trees.

In Section 4, we obtain a bijection between Fishburn trees and modified ascent se-
quences by restricting the in-order sequence and the max-decomposition.
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In Section 5 we define a bijection from Fishburn trees to Fishburn matrices by simply
mapping each maximal right path to a specific row of the matrix. More specifically,
we set the (i, j)-th entry of the matrix equal to the number of nodes with label j
contained in the i-th path. On the other hand, a Fishburn matrix naturally induces a
Fishburn cover, and the corresponding Fishburn tree is determined by Theorem 3.9.

The bijection from Fishburn trees to (2+2)-free posets has a similar flavour, and is
illustrated in Section 6. Nodes with label i are mapped to the i-th level of the poset,
and the j-th strict down-set contains those that belong to a maximal right path with
index strictly less than j. Conversely, we show that Fishburn covers naturally define
a canonical labeling of (2+2)-free posets.

In Section 7 we use Fishburn covers as stepping stones to compute the flip and sum
of modified ascent sequences. We end this section with two concrete examples.

In Section 8 we provide a high-level description of the framework introduced in this
paper and leave some open problems and suggestions for future work.

2 Endofunctions and decreasing binary trees

For any natural number n, let Endn be the set of endofunctions, x : [n]→ [n], where
[n] = {1, 2, . . . , n}. We often identify an endofunction x with the word x = x1 . . . xn,
where xi = x(i) for each i ∈ [n]. Let End = ∪n≥0Endn. In general, given a set A
whose elements are equipped with a notion of size, we will denote by An the set of
elements in A that have size n. Or, conversely, given a definition of An (of elements
of size n) we let A = ∪n≥0An. If Im(x) = [k], for some k ≤ n, then x is a Cayley
permutation [4, 21]. The set of Cayley permutations is denoted by Cay. In other
words, x is a Cayley permutation if it contains at least one copy of each integer
between 1 and its maximum element. For example, Cay1 = {1}, Cay2 = {11, 12, 21}
and

Cay3 = {111, 112, 121, 122, 123, 132, 211, 212, 213, 221, 231, 312, 321} .

There is a well known bijection between Cayley permutations and ballots (ordered
set partitions) of [n]. Indeed, a Cayley permutation x encodes the ballot B1 . . . Bk,
where i ∈ Bx(i). In particular, |Cayn| is the n-th Fubini number, which is sequence
A000670 in the OEIS [22].

A binary tree is either the empty tree or a triple

T = (L, r,R),

where r is a node called the root of T and L and R are binary trees called the left
subtree and the right subtree of T , respectively. Equivalently, a binary tree is a rooted
plane tree where each node has either 0 children; 1 child, which can be either a left
or right child; or 2 children, namely a left child and a right child.

Let T be a binary tree. We denote by V(T ) the set of nodes of T . The size of T
is the cardinality of V(T ). Now, suppose that T is equipped with a vertex labeling
l : V(T ) → {1, 2, . . . } assigning to each node v ∈ V(T ) a positive integer label l(v).
Then, assuming that T is nonempty, we let

max(T ) = max
{
l(v) : v ∈ V(T )

}
3
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Figure 1: Regular endotrees of size 3. Fishburn trees have been highlighted.

denote the largest value among the labels of T . For convenience we also let max(T ) =
0 when T = ∅ is the empty tree.

A decreasing binary tree is a vertex-labeled binary tree T such that either T is empty
or T = (L, r,R), where L and R are decreasing binary trees and

l(r) ≥ max
{
max(L),max(R)

}
.

We say that T is strictly decreasing to the left if it is empty or l(r) > max(L) and L
and R are strictly decreasing to the left. Less formally, a vertex-labeled binary tree T
is decreasing if on any path from the root to a leaf we encounter the labels in weakly
decreasing order. It is strictly decreasing to the left if on any such path when we take
a left turn we encounter a smaller label.

Definition 2.1. A decreasing binary tree T of size n is said to be an endotree if it
is strictly decreasing to the left and l(v) ∈ [n] for each v ∈ V(T ). The last condition
may be more compactly written Im(l) ⊆ [n]. If, in addition, Im(l) = [k], for some
k ≤ n, then T is said to be regular. We denote by Tree the set of endotrees and by
Tree⋆ the set of regular endotrees.

Of the four endotrees of size 2 there is exactly one which is not regular, namely

(
∅, 2, (∅, 2, ∅)

)
=

2

2

Of size 3 there are 13 regular endotrees and they are illustrated in Figure 1.

The in-order traversal of a binary tree T = (L, r,R) is performed as follows: recur-
sively traverse the left subtree L, visit the root r, and recursively traverse the right
subtree R. For the rest of this paper, we will denote by vi the i-th visited node in
the in-order traversal of T . The in-order sequence of a vertex-labeled binary tree
T is defined by α(T ) = x1 . . . xn, in which xi = l(vi). We can alternatively define
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α(T ) recursively as follows. If T is the empty tree, then α(T ) is the empty string.
Otherwise, T is nonempty and we can write T = (L, r,R). Then

α(T ) = α(L)l(r)α(R).

It is easy to see that if T is an endotree (of size n and maximum k), then α(T ) is an
endofunction (of size n and maximum k). That is, we have a map

α : Treen → Endn.

We wish to define the inverse map ᾱ. The max-decomposition of a nonempty endo-
function x = x1 . . . xn is

x = pref(x)xm suff(x),

where pref(x) = x1 . . . xm−1, suff(x) = xm+1 . . . xn and m = min
(
x−1(max(x))

)
is

the index of the leftmost occurrence of max(x) = max{xi : i ∈ [n]} in x. The
tree ᾱ(x) is then defined using recursion: If x is the empty word, then ᾱ(x) is the
empty tree. Otherwise, x is nonempty and using the max-decomposition we can write
x = pref(x)xmsuff(x). Now, let

ᾱ(x) =
(
L, r,R

)
be the tree with root r labeled l(r) = xm, left subtree L = ᾱ

(
pref(x)

)
and right

subtree R = ᾱ
(
suff(x)

)
.

Proposition 2.2. If x ∈ Endn, then ᾱ(x) ∈ Treen.

Proof. Let T = ᾱ(x). If x is empty, then there is nothing to prove. Assume that x
is nonempty and let x = pref(x)xmsuff(x) be its max-decomposition. By definition
of the map ᾱ we may write T = (L, r,R), where l(r) = xm, L = ᾱ

(
pref(x)

)
and

R = ᾱ
(
suff(x)

)
. Since xm is the leftmost occurrence of max(x) in x, each label in L

is strictly smaller than the label xm of the root r. Similarly, T is weakly decreasing
to the right since each label in R is at most equal to xm. The result follows from
applying the induction hypothesis to L and R.

Proposition 2.3. The inverse map of α is ᾱ.

Proof. Using induction we shall show that α◦ ᾱ is the identity function on Endn, and
that ᾱ ◦ α is the identity function on Treen. The base cases are trivial and omitted.
Assume n ≥ 1. Let x ∈ Endn. Applying the induction hypothesis to pref(x) and
suff(x) we find that

α
(
ᾱ(x)

)
= α

(
ᾱ(pref(x)

)
xmα

(
ᾱ(suff(x)

)
= pref(x)xmsuff(x) = x.

Let T = (L, r,R) ∈ Treen. By definition of α, we have

α(T ) = α(L)l(r)α(R). (1)

Since T is strictly decreasing to the left, we have l(r) > l(u) for each node u in L.
Thus, Equation 1 is the max-decomposition of α(T ) and, by induction,

ᾱ
(
α(T )

)
=
(
ᾱ(α(L)), r, ᾱ(α(R))

)
= (L, r,R) = T.
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A corollary of the previous result is that α : Tree→ End is a size-preserving bijection
with inverse ᾱ. Furthermore, it is easy to see that T ∈ Tree⋆n if and only if α(T ) ∈
Cayn. That is, the (restricted) map α : Tree⋆ → Cay is a size-preserving bijection
between Tree⋆ and Cay.

Corollary 2.4. For each n ≥ 1 we have

|Treen| = |Endn| and |Tree⋆n| = |Cayn|.

See Figure 2 for a concrete endotree and its corresponding endofunction. In Figure 3
(on the left) an example of a decreasing binary tree that fails to be an endotree is
given.

3 Fishburn trees and Fishburn covers

Throughout the preceding section we have denoted by T = (L, r, T ) a binary tree with
root r, left subtree L and right subtree R. In the same vein, given a node v ∈ V(T ),
let T (v) denote the subtree of T consisting of v together with all the descendants
of v, and let L(v) and R(v) denote the left and right subtrees of T (v), so that
T (v) = (L(v), v, R(v)). Recall that vi denotes the i-th visited node in the in-order
traversal of T ; in particular, v1 is the first visited node and L(v1) = ∅. Assuming
that T is an endotree and that x = α(T ) is the corresponding endofunction, then
xi−1 < xi if and only if L(vi) is nonempty. Such an xi is called an ascent top; by
convention and for convenience we will also include x1 among the ascent tops. This
justifies us defining

asctops(T ) = {v1} ∪ {vi : L(vi) ̸= ∅}
as the set consisting of v1 and nodes that have a left child. We also define

nub(T ) = {vj : l(vi) ̸= l(vj) for each i < j}

as the set of nodes vj whose label ℓ = l(vj) is the first occurrence of ℓ in the in-order
sequence of T . As illustrated in Figure 2, we can represent an endotree so that labels
of nodes in nub(T ) are the “leftmost” occurrences among the labels of T . The in-order
sequence α(T ) is then obtained by simply reading the labels of T from left to right.
With this in mind, we say that vj ∈ nub(T ) is the leftmost occurrence of l(vj) in T .

We are now ready to give the definition of Fishburn tree.

Definition 3.1. A Fishburn tree is a regular endotree T where nub(T ) = asctops(T ),
and we denote by T the set of Fishburn trees.

An example of a Fishburn tree is given in Figure 2; an example of a non-Fishburn
tree is given in Figure 3 (on the right). Five of the 13 endotrees of size 3 are Fishburn
trees; they are highlighted in Figure 1. We continue this section with a couple of
simple lemmas concerning Fishburn trees.

Lemma 3.2. If T ∈ T , then l(v1) = 1.

Proof. Let vj ∈ nub(T ) be the leftmost occurrence of 1 in T . By definition of Fishburn
tree we have nub(T ) = asctops(T ) and thus vj ∈ asctops(T ). Hence the disjunction
j = 1 or L(vj) ̸= ∅ holds true. The latter disjunct is, however, false since l(vj) = 1
and T is strictly decreasing to the left.
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Figure 2: A Fishburn tree T and the in-order sequence x = α(T ). Nodes are spaced
so that the in-order sequence is obtained by reading the labels of the nodes from left
to right. Finally, labels of nodes in asctops(T ) = nub(T ), as well as the corresponding
entries in asctops(x) = nub(x), are underlined.

Lemma 3.3. Let T ∈ T and let k = max(T ). Then

|asctops(T )| = k and l
(
asctops(T )

)
= [k].

Proof. We have Im(l) = [k]. In particular, nub(T ) contains exactly one node with
label i, for each i ∈ [k]. The claim then immediately follows from nub(T ) =
asctops(T ).

A maximal right path of a binary tree T is a nonempty sequence of nodes W =
(w1, w2, . . . , wk) such that wi+1 is the right child of wi, for each i = 1, . . . , k− 1; and
W is maximal in the sense that the first node w1 is not the right child of any node
and the last node wk has no right child. Maximal left path is defined analogously. It
is easy to see that for any node v ∈ V (T ) there is a unique maximal right path to
which v belongs. Similarly, there is a unique maximal left path to which v belongs.
We shall denote those by rpath(v) and lpath(v), respectively. Furthermore, we define
the diagonal of a nonempty binary tree T = (L, r,R) by

diag(T ) = lpath(r).

Note that diag(T ) ⊆ asctops(T ). We shall partition asctops(T ) accordingly as

asctops(T ) = diag(T ) ∪ diag(T ),

where diag(T ) = {v ∈ asctops(T ) : v /∈ diag(T )}. We shall also say that a node
v ∈ asctops(T ) is diagonal if v ∈ diag(T ) and that it is non-diagonal if v ∈ diag(T ).
Note that v1 is always diagonal.

Next we show that in a Fishburn tree the first node of a maximal right path is either
diagonal or the left child of a non-diagonal node.
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Figure 3: The tree on the left is not an endotree since it is not strictly decreasing to
the left. The tree on the right is a regular endotree, but not a Fishburn tree since
nub(T ) ̸= asctops(T ). Indeed, if u and v are the distinguished nodes with l(u) = 3
and l(v) = 4, respectively, then u ∈ asctops(T )\nub(T ) and v ∈ nub(T )\asctops(T ).
Note that the two trees have the same in-order sequence x = 22313254.

Lemma 3.4. Let W be a maximal right path of a Fishburn tree T and let w be the
first node of W . Then either w ∈ diag(T ) or w is the left child of some v ∈ diag(T ).

Proof. Let r be the root of T . Since W is maximal, w is not a right child. If w is not
a left child, then w = r and thus w ∈ diag(T ). Otherwise, w is the left child of some
v ∈ asctops(T ). If v ∈ diag(T ), then w ∈ diag(T ) as well, since diag(T ) = lpath(r).
Otherwise, v ∈ diag(T ).

The following corollary is an immediate consequence of Lemma 3.4.

Corollary 3.5. For T ∈ T we have

V(T ) =
⋃

v∈diag(T )

rpath(v) ∪
⋃

v∈diag(T )

rpath
(
lchild(v)

)
where all the unions are disjoint and lchild(v) denotes the left child of v.

We refer to the partition of V(T ) induced by its maximal right paths as the rpath-
decomposition of T . Furthermore, we say that a maximal right path W is diagonal if
its first node is diagonal; otherwise, if the first node is the left child of a non-diagonal
node, W is non-diagonal.

By Corollary 3.5 each maximal right path W of T can be associated with a node in
asctops(T ) in the following manner:

• If W is diagonal, then it is associated with its first node, which is a diagonal
node.

• If W is non-diagonal, then it is associated with the father of its first node, which
is a non-diagonal node.

Conversely, each node in asctops(T ) determines a unique maximal right path this way.
The correspondence between maximal right paths of T and asctops(T ) described
above is thus bijective. Now, recall from Lemma 3.3 that |asctops(T )| = k and
l
(
asctops(T )

)
= [k], where k = max(T ). In particular, there are exactly k maximal
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Figure 4: The rpath-decomposition of the Fishburn tree of Figure 2. Here diag(T )
contains the underlined nodes with label 1, 5, 8 and 9. Thus the paths W1, W5, W8

and W9 are diagonal, while W2, W3, W4, W6 and W7 are non-diagonal.

right paths in T . Moreover, if W is a maximal right path and v is its associated node
in asctops(T ), then we can assign the integer l(v) ∈ [k] to it. Let Wi be the maximal
right path assigned to i ∈ [k] in this manner. In particular, Wk = rpath(r), where
r is the root of T . As an example, the maximal right paths of the Fishburn tree in
Figure 2 are illustrated in Figure 4. Here below, to encode them more compactly, we
abuse notation and write down the corresponding labels:

W1 = (1, 1) W4 = (2, 2) W7 = (5, 5, 4, 3)
W2 = (1) W5 = (5, 5, 3) W8 = (8, 8, 7, 3)
W3 = (1) W6 = (2) W9 = (9, 6, 1).

Definition 3.6. For each node u ∈ V(T ) we let b(u) be the index of the maximal
right path that contains u; i.e. u ∈Wb(u).

The label b(u) can be recursively computed as follows. The label of the root r of T
is b(r) = l(r), and for v ∈ V(T ), v ̸= r, we have

b(v) =


b(u) if v = rchild(u),

l(v) if v = lchild(u) and u ∈ diag(T ),

l(u) if v = lchild(u) and u ∈ diag(T ).

(2)

Here, lchild(u) denotes the left child of u, and rchild(u) denotes the right child of u.
See Figure 5 for an illustration of these rules.

Let Bi be a multiset containing a copy of the integer j for each node with label j in
Wi. That is, Bi is the multiset {l(u) : u ∈ Wi}. Given a Fishburn tree T , we denote
by P(T ) the list of multisets

P(T ) = B1 . . . Bk

9
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u

v

u ∈ diag(T )

b(v) = l(v)

u

v

u ∈ diag(T )

b(v) = l(u)

Figure 5: Rules to determine the label b(v).

defined this way. Note that
⋃

i∈[k]Bi = [k], since V(T ) = [k]. Furthermore, j ≤ i for
each j ∈ Bi, since T is decreasing.

Definition 3.7. An ordered collection of k nonempty multisets P = B1 . . . Bk is a
Fishburn cover if the following two conditions are satisfied:

•
⋃
i∈[k]

Bi = [k];

• for all i ∈ [k], if j ∈ Bi, then j ≤ i.

As noted above, the rpath-decomposition of a Fishburn tree T determines a Fishburn
cover P(T ). For instance, the Fishburn cover of the tree in Figure 2 is

P(T ) = {1, 1}{1}{1}{2, 2}{5, 5, 3}{2}{5, 5, 4, 3}{8, 8, 7, 3}{9, 6, 1},

where, for reasons that will become clear later, the elements of a block are written in
weakly decreasing order. In Theorem 3.9, below, we show that the converse is true
as well; that is, every Fishburn cover uniquely determines the rpath-decomposition
of a Fishburn tree. First a simple lemma.

Lemma 3.8. Let T be a Fishburn tree and let P(T ) = B1B2 . . . Bk be the Fishburn
cover of T . Then, for each i ∈ [k],

i ∈ Bi ⇐⇒ Wi is diagonal.

Proof. The maximal right path Wi is diagonal if and only if i is the label of the first
node of Wi, that is i ∈ Bi.

Theorem 3.9. For each Fishburn cover P , there is a unique Fishburn tree T such
that P(T ) = P .

Proof. Let P = B1 . . . Bk be a Fishburn cover. We will construct, in multiple steps, a
Fishburn tree T such that P(T ) = P . For each i, j ∈ [k], let mi(j) be the multiplicity
of j in Bi. Construct a decreasing binary tree Wi consisting of a single right path
with |Bi| nodes in total and mi(j) nodes labeled j. It is easy to see that P(T ) = P
if and only if the rpath-decomposition of T is given by the paths W1, . . . , Wk.

Let D = {i ∈ [k] : i ∈ Bi} and D̄ = {i ∈ [k] : i /∈ Bi}. Due to Lemma 3.8, we want
to construct our tree in such a way that Wi is diagonal if i ∈ D, and non-diagonal
if i ∈ D̄. We start by arranging the diagonal paths {Wi : i ∈ D} in a comb-shaped
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Step 3: T = T3 is obtained by
attaching W3 (i.e. B3 = {2}) to T2.

Figure 6: The step-by-step construction of Theorem 3.9 on the Fishburn cover
P(T ) = {1}{2, 1}{2}{2, 1}{5, 4, 2}{5, 3, 2}{7, 6, 3}. At each step, nodes in the newly
appended path are underlined. Observe that, at the last step, W3 is attached to the
leftmost occurrence of 3 in T2. This is an example where the ordering in which the
paths are attached matters. Indeed, if we had started by appending W3 to T0, then
the first node of W3 would have been attached to a different node (the only other
node labeled 3) and the result would not have been a Fishburn tree.
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decreasing binary tree tree T0 (see Figure 6) so that diag(T0) = {wi : i ∈ D}, where
wi is the first node of Wi.

To attach the remaining non-diagonal paths, {Wi : i ∈ D̄}, we will specify an iterative
procedure. Suppose that we are in s-th step of this procedure and that we have already
constructed a tree Ts−1. Due to the equality nub(T ) = asctops(T ) defining Fishburn
trees, we shall attach Wi, with i ∈ D̄, to Ts−1 so that wi becomes the left child of the
leftmost occurrence of i. To make sure that the procedure is well-defined and that
the desired property is preserved, we start with the largest index in D̄ and proceed
in decreasing order. Once again, we refer to Figure 6 for a step-by-step illustration
of this construction. Assume that D̄ = {j1, j2, . . . , jm} with j1 > j2 > · · · > jm. For
s = 1, 2, . . . ,m:

• Let ys be the leftmost occurrence of js in Ts−1.

• Let Ts be the tree obtained by attaching the path Wjs to Ts−1 so that wjs—the
first node of Wjs—becomes the left child of ys.

For the succession of trees T0, T1, . . . , Tm to be well-defined we need to verify that,
for s = 1, 2, . . . ,m,

1. The tree Ts−1 contains at least one node with label js.

2. The node ys, whose label is the leftmost occurrence of js in Ts−1, has no left
child.

To prove the first property, note that, since P is a Fishburn cover, we have

[k] =
⋃
i∈[k]

Bi =
⋃
i∈[k]

l(Wi).

Thus at least one path, say Wt, contains a node with label js. If t ∈ D, then Wt

is contained in T0. On the other hand, suppose that t = jq ∈ D̄, for some q. Note
that q < s, or else jq ≤ js and l(u) < jq ≤ js for each u ∈ Wjq , contradicting the
assumption that Wt contains a node with label js. Hence Wjq is contained in Tq,
with q < s. In both cases Ts−1 contains at least one node with label js and hence ys
is well-defined.

To prove the second property, note that

asctops(Ts−1) = {wi : i ∈ D} ∪ {y1, . . . , ys−1}

and no node in asctops(Ts−1) has label js.

Thus the succession of trees T0, T1, . . . , Tm is well-defined and we let T = Tm. It
remains to show that T is a Fishburn tree and that it is the only Fishburn tree that
satisfies P(T ) = P . The proof is divided into four parts corresponding to following
claims, in which s ∈ {0, 1, . . . ,m}:

1. diag(Ts) = {y1, . . . , ys};

2. asctops(Ts) ⊆ nub(Ts);

12



3. T = Tm is a Fishburn tree;

4. T is the only Fishburn tree such that P(T ) = P .

Proof of Claim 1. Note that diag(T0) = ∅. Assume that s ∈ [m] and diag(Ts−1) =
{y1, . . . , ys−1}. Now, Ts is obtained from Ts−1 by attaching Wjs to Ts−1 so that wjs

becomes the left child of ys. Hence,

diag(Ts) = diag(Ts−1) ∪ {ys} = {y1, . . . , ys−1, ys}.

Proof of Claim 2. Note that asctops(T0) = diag(T0) ⊆ nub(T0). Assume that s ∈ [m]
and asctops(Ts−1) ⊆ nub(Ts−1). Now,

asctops(Ts) = asctops(Ts−1) ∪ {ys}.

Observe that ys ∈ nub(Ts) by construction. Furthermore, each node u in the newly
attached path Wjs has label l(u) < js due to Lemma 3.8 and the definition of Fishburn
cover. Thus, l(u) < js < jq for each q < s and hence {y1, . . . , ys−1} ⊆ nub(Ts).
Therefore, diag(Ts) = {y1, . . . , ys−1, ys} ⊆ nub(Ts). To obtain the desired inclusion
asctops(Ts) ⊆ nub(Ts) it suffices to prove that diag(Ts) ⊆ nub(Ts). Consider the
(only) path Q from the root of Ts to ys and let i be the label of the last diagonal
top contained in Q (see Figure 7). Let v ∈ diag(Ts). Recall that v ∈ nub(Ts−1). If
l(v) ≤ i, then v precedes each node of Wjs in the in-order traversal of Ts and thus
v ∈ nub(Ts). On the other hand, if l(v) > i, then l(u) < i < l(v) for each u ∈ Wjs ,
hence we have v ∈ nub(Ts) once again.

Proof of Claim 3. Note that T is decreasing and strictly decreasing to the left by
construction. Moreover, due to what we proved above, we have

asctops(T ) ⊆ nub(T ) and |asctops(T )| = k.

Consequently, |nub(T )| = k as well, from which the equality asctops(T ) = nub(T )
follows and hence T is a Fishburn tree.

Proof of Claim 4. Let T ′ be a Fishburn tree with P(T ′) = P . We will show that
T ′ = T . Since P(T ′) = P(T ), the rpath-decomposition of T ′ is given by the same
paths W1, . . . ,Wk. In particular, in T ′ the diagonal paths {Wi : i ∈ D} must be
arranged in a comb-shaped tree T ′

0 such that T ′
0 = T0. We wish to prove that each

of the remaining paths {Wi : i ∈ D̄} is attached to the same node as in T . That
is, for s = 1, . . . ,m, the path Wjs is attached to the leftmost occurrence ys of js in
Ts−1, where D̄ = {j1, . . . , jm} and j1 > j2 > · · · > jm. Consider the path Wj1 . Note
that l(u) < j1 for each u ∈ Wjt and t ≥ 1, hence there are no nodes with label j1
in the paths Wj1 , . . . ,Wjm . Therefore, y1 is the leftmost occurrence of j1 not only
in T ′

0 = T0, but also in every tree obtained by attaching Wj1 , . . . ,Wjm to T ′
0. In

particular, due to the usual equality asctops(T ′) = nub(T ′) defining Fishburn trees,
Wj1 must be attached to y1 in T ′. In other words, the subtree T ′

1 of T ′ consisting of
T ′
0 and the path Wj1 is T ′

1 = T1. Similarly, we have l(u) < j2 for each u ∈ Wjt and
t ≥ 2. Thus y2 is the leftmost occurrence of j2 in every tree obtained by attaching
Wj2 , . . . ,Wjm to T ′

1, and Wj2 must be attached to y2 in T ′. The remaining paths can
be addressed analogously.
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l(u) < i

l(u) > i

ys

Q

Figure 7: Referring to Claim 2 of Theorem 3.9, the only path Q from r to ys, where
r is the root of Ts.

In the following sections, we will use Theorem 3.9 as a tool to define maps from
Fishburn matrices and (2+2)-free posets to Fishburn trees. Namely, we will identify
rows of matrices and down-sets of posets as the “elementary blocks” of a Fishburn
cover. Then, Theorem 3.9 provides a constructive procedure to assemble the resulting
blocks in order to obtain a Fishburn tree. This approach is in fact more general and
could be extended to any other Fishburn structure.

4 Modified ascent sequences

Let x : [n]→ [n] be an endofunction. Writing xi = x(i), as usual, we define

asctops(x) = {(1, x1)} ∪ {(i, xi) : 1 < i ≤ n, xi−1 < xi}

as the set of ascent tops and their indices—including the first element—and let

nub(x) = {(minx−1(j), j) : 1 ≤ j ≤ max(x)}

be the set of first occurrences and their indices. An ascent sequence is an endofunction
x : [n]→ [n] such that x1 = 1 and, for i ≤ n− 1,

xi+1 ≤ |asctops(x1 · · ·xi)|+ 1.

Let A be the set of ascent sequences. Bousquet-Mélou et al. [2] defined an iterative
procedure to map an ascent sequence x to its modified version x̂, and the set Â of
modified ascent sequences was originally defined as the image of A under the x 7→ x̂
bijection. We [7] have provided the following characterization of modified ascent
sequences.

Lemma 4.1. The set Â of modified ascent sequences is characterized by

Â = {x ∈ Cay : asctops(x) = nub(x)}.

Alternatively, a recursive definition of Â can be found in [7], as well as a description
of Â by avoidance of two Cayley-mesh patterns, defined in [5].
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Recall that α(T ) denotes the in-order sequence of the tree T . We wish to prove
that T 7→ α(T ) is a bijective mapping from from Fishburn trees to modified ascent
sequences. We shall start by showing that the statistics nub(T ) and asctops(T ) (on
endotrees) are natural analogues of statistics nub(x) and asctops(x) (on endofunc-
tions).

Lemma 4.2. Let T ∈ Tree and let x = α(T ). Then, for each i ≥ 1,

(i, xi) ∈ nub(x) ⇐⇒ vi ∈ nub(T ).

Proof. Let i ≥ 1. Then (i, xi) ∈ nub(x) if and only if xi is the leftmost occurrence of
the corresponding integer l(vi) in x. Equivalently, l(vj) ̸= l(vi) for each j < i; that
is, vi ∈ nub(T ).

Lemma 4.3. Let T ∈ Tree and let x = α(T ). Then, for each i ≥ 1,

(i, xi) ∈ asctops(x) ⇐⇒ vi ∈ asctops(T (x)).

Proof. By definition we have (1, x1) ∈ asctops(x) and v1 ∈ asctops(T ), which takes
care of the case i = 1. Assume i ≥ 2 and suppose, initially, that (i, xi) ∈ asctops(x);
that is, xi−1 < xi. Since xi−1 and xi are consecutive entries in the in-order sequence,
the node vi is visited immediately after vi−1 in the in-order traversal of T . In fact,
only the following two cases are admitted:

1. vi−1 is the last visited node in the subtree of T with root lchild(vi). In this
case, lchild(vi) ̸= ∅ and thus vi ∈ asctops(T ).

2. vi = rchild(vi−1). This is however impossible since T is decreasing and xi > xi−1

by our assumptions.

For the converse, let vi ∈ asctops(T ). Then vi−1 is contained in the subtree of T with
root lchild(vi). In particular, xi−1 < xi since T is strictly decreasing to the left.

Proposition 4.4. Let T be an endotree and let x = α(T ). Then

T ∈ Tn if and only if x ∈ Ân.

Proof. It follows immediately by Lemma 4.1, Lemma 4.2 and Lemma 4.3. Indeed,
for each i ∈ [n],

(i, xi) ∈ nub(x) ⇐⇒ vi ∈ nub(T )

and
(i, xi) ∈ asctops(x) ⇐⇒ vi ∈ asctops(T ).

Thus the equality asctops(x) = nub(x) is satisfied if and only if nub(T ) = asctops(T )
is satisfied as well.

Corollary 4.5. The (restricted) map α : T → Â and its inverse map ᾱ : Â → T
are size-preserving bijections between Fishburn trees and modified ascent sequences.
In particular, for each n ≥ 1 we have

|Tn| = |Ân|.

A Fishburn tree and its in-order sequence are illustrated in Figure 2.
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5 Fishburn matrices

A Fishburn matrix is a lower triangular matrix with non-negative integer entries such
that every row and column contains at least one nonzero entry. LetM denote the set
of Fishburn matrices. The size of A ∈ M is the sum of its entries, and Mn denotes
the set of Fishburn matrices of size n. When displaying a Fishburn matrix we will
for the sake of readability leave the region above the diagonal empty and zeros on or
below the diagonal will be denoted by a dot. For example, we haveM1 =

{[
1
]}

,

M2 =
{
[2] ,

[
1
· 1

]}
and M3 =

{
[3] ,

[
2
· 1

]
,
[
1
· 2

]
,
[
1
1 1

]
,

[
1
· 1
· · 1

]}
.

Our definition of a Fishburn matrix is a slight departure from the original defini-
tion [13] in that our matrices are lower triangular rather than upper triangular.

We wish to define a mapping β : T → M by regarding the label l(u) of each node
u as a column index and the index b(u) of the maximal right path containing u as a
row index.

Let T be a Fishburn tree with n nodes. Let k = max(T ) and let P(T ) = B1 . . . Bk

be the Fishburn cover of T . For each i, j ∈ [k], let mi(j) be the multiplicity of j in
Bi. Equivalently, mi(j) is equal to the number of nodes with label j contained in Wi,
where Wi is the i-th maximal right path in the rpath-decomposition of T . Then we
let β(T ) be the k × k matrix whose (i, j)-th entry is equal to mi(j).

A simple high-level description of β is the following:

• Compute the rpath-decomposition of T .

• Use the i-th path Wi to “fill” the i-th row of β(T ).

Proposition 5.1. Let T be a Fishburn tree of size n and with max(T ) = k. Then
β(T ) is a k × k Fishburn matrix of size n.

Proof. Since Bi is nonempty, the i-th row of β(T ) contains at least one nonzero
entry. Also,

⋃
i∈[k]Bi = [k] and hence each column contains at least one nonzero

entry. Furthermore, β(T ) is lower triangular, since j ≤ i for each j ∈ Bi and i ∈ [k].
Finally, the number of nodes in T is equal to the sum of entries of β(T ).

For instance, recall the Fishburn cover associated with the Fishburn tree in Figure 2:

P(T ) = {1, 1}{1}{1}{2, 2}{5, 5, 3}{2}{5, 5, 4, 3}{8, 8, 7, 3}{9, 6, 1}.

Its corresponding Fishburn matrix A = β(T ) is

A =



2
1 ·
1 · ·
· 2 · ·
· · 1 · 2
· 1 · · · ·
· · 1 1 2 · ·
· · 1 · · · 1 2
1 · · · · 1 · · 1
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1

1 1

· 1 ·

1 1 · ·

· 1 · 1 1

· 1 1 · 1 ·

· · 1 · · 1 1





−→

1

1 2

2

1 2

2 4 5

2 3 5

3 6 7

Figure 8: The Fishburn tree illustrated in Figure 6 drawn on the corresponding
binary Fishburn matrix. The rightmost entry in the bottom row is the root of the
tree. Red arrows point to left children and blue arrows point to right children.
Dotted arrows indicate the “bouncing” construction that determines the father of
non-diagonal rightmost entries.

where, for instance, the penultimate row of A corresponds to the penultimate block
of P(T ): [

0 0 1 0 0 0 1 2 0
]
←→ {8, 8, 7, 3}.

Defining the inverse map β̄ is now straightforward. Let A = (ai,j) be a k×k Fishburn
matrix. Let P(A) = B1 . . . Bk, where Bi is a multiset containing ai,j copies of the
integer j, for i, j ∈ [k]. Then P(A) is a Fishburn cover. Indeed

⋃
i∈[k]Bi = [k], since

A does not contain null columns; each multiset Bi is nonempty, since A does not
contain null rows; and j ≤ i for each j ∈ Bi, since A is lower-triangular. Now, due
to Theorem 3.9, there is a unique Fishburn tree T such that P(T ) = P(A), and we
let β̄(A) = T . Finally, it is clear that β(T ) = A.

We have thus proved the following result.

Corollary 5.2. The map β : T → M and its inverse map β̄ : M → T are size-
preserving bijections between Fishburn trees and Fishburn matrices. In particular, for
each n ≥ 1 we have

|Tn| = |Mn|.

Note that β̄(A) can be constructed using Theorem 3.9: each path Wi is obtained by
reading the entries in the i-th row of A, and the paths Wi are then assembled as
illustrated in Theorem 3.9.

Remark 5.3. The Fishburn tree β̄(A) can be drawn directly on the Fishburn matrix
A. This construction is most significant on binary matrices, where each nonzero entry
of A is identified with exactly one node of β(A). Instead of giving the full details,
we refer the reader to the example in Figure 8. One interesting aspect is that if the
rightmost entry of a row is not on the diagonal of A, then its father can be determined
by “bouncing” off of the diagonal; indeed if ai,i = 0, then Wi is non-diagonal and the
topmost node of Wi (i.e. the rightmost entry of the i-th row of A) is the left child of
a node with label i (i.e. in column i). In general, more than one entry could be hit
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by bouncing off of the diagonal. To determine the correct one is rather tricky, and
involves defining a notion of in-order traversal of matrices which we have decided to
omit.

6 (2+2)-free posets

In this paper we consider two posets to be equal up to isomorphism, that is, if there
is an order preserving bijections between them. The isomorphism class is called an
unlabeled poset. An unlabeled poset is (2+2)-free if it does not contain an induced
subposet order isomorphic to 2+2, the union of two disjoint 2-element chains. The
size of a poset is the number of its elements and we let Pn denote the set of unlabeled
(2+2)-free posets of size n. Given Q ∈ P = ∪n≥0Pn and u ∈ Q, let

D(u) = {v : v < u}

be the strict down-set of u. Fishburn [15] showed that a poset is (2+2)-free if and
only if it is order isomorphic to an interval order. Alternatively (see [2] for a proof),
a poset is (2+2)-free if and only if its strict down-sets can be linearly ordered by
inclusion. That is, the strict down-sets of Q form a chain

∅ = D1 ⊂ D2 ⊂ · · · ⊂ Dk.

For convenience, we let Dk+1 = Q. If D(u) = Di, we say that the element u is at
level i and we write lev(u) = i. Finally, we let

Li = {u : lev(u) = i}

denote the i-th level of Q. It is clear that a (2+2)-free poset is completely determined
by its levels and strict down-sets. Indeed, any poset Q is determined by the list of
its strict down-sets {D(u) : u ∈ Q}, and D(u) = Di if lev(u) = i. An element u of
Q is maximal if no other element of Q is greater than u. It is minimal if no other
element is smaller than u. We let max(Q) and min(Q) denote the set of maximal
and minimal elements, respectively. It is easy to see that if Q is (2+2)-free, then
min(Q) = L1 and max(Q) = Dk+1 \Dk.

We wish to define a bijection γ : T → P. Let T be a Fishburn tree and let k =
max(T ). Recall from Definition 3.6 that, given u ∈ V(T ), the index of the maximal
right path that contains u in the rpath-decomposition of T is denoted by b(u). Recall
also that l(u) ≤ b(u) for each u ∈ V(T ), a fact that will be used repeatedly in this
section. We wish to define a (2+2)-free poset Q = γ(T ) by associating each node of
T with an element of Q. That is, we let V (T ) be the set of elements of Q. Then we
define a partial order on Q by letting, for any u and v in Q,

u < v ⇐⇒ b(u) < l(v).

Let us prove that this relation is a strict partial order. Irreflexivity is an immediate
consequence of the inequality l(u) ≤ b(u). To prove antisymmetry, suppose that
u < v; i.e. b(u) < l(v). For a contradiction, suppose also that v < u; i.e. b(v) < l(u).
Then

b(u) < l(v) ≤ b(v) < l(u),
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from which we get b(u) < l(u), which is impossible. Finally, to prove transitivity,
suppose that u < v and v < w. Then

b(u) < l(v) ≤ b(v) < l(w),

from which b(u) < l(w), and thus u < w, follows. To prove that Q is (2+2)-free, we
show that its strict down-sets are linearly ordered by inclusion. Let us first determine
its strict down-sets. Let u ∈ Q and suppose that l(u) = i. The strict down-set of u is

D(u) = {v ∈ Q : b(v) < i}.

In other words, all the elements with vertex label i have the same strict down-set,
namely {v ∈ Q : b(v) < i}. For i ∈ [k], let Di = {v ∈ Q : b(v) < i}. Note that there
is at least one element in Q whose down-set is Di since l(Q) = [k] by the definition
of Fishburn tree. Now, it is clear by definition that Di ⊆ Di+1. Furthermore, the
inclusion is strict since b(Q) = [k]; thus, there is at least one element in Di+1 \Di =
{u ∈ Q : b(u) = i}. Therefore, the down-sets of Q are precisely the sets Di, i ∈ [k],
which are strictly ordered by inclusion. We have now proved that Q is (2+2)-free.
Note that the levels of Q are

Li = {u ∈ Q : D(u) = Di} = {u ∈ Q : l(u) = i}.

In fact, an alternative way to define Q is to let its levels and strict down-sets be

Li = {u ∈ V(T ) : l(u) = i} and Di = {u ∈ V(T ) : b(u) < i}.

The inverse map γ̄ of γ is defined as follows. Given a poset Q ∈ P, we define a
canonical labeling of Q by setting, for each u ∈ Q,

l(u) = lev(u) and b(u) = min{i : u ∈ Di} − 1.

Note that {l(u) : u ∈ Q} = {b(u) : u ∈ Q} = [k], where k is the number of levels
of Q. Moreover, we have l(u) ≤ b(u) for each u ∈ Q. In fact, to the poset Q we
have associated the Fishburn cover P(Q) = B1 . . . Bk, where Bi contains a copy of
the integer j for each u ∈ Q with labels b(u) = i and l(u) = j. We can thus use
Theorem 3.9 to construct a Fishburn tree T = γ̄(Q) in which each node u has labels
l(u) and b(u). Finally, it is easy to see that γ(T ) = Q and it follows that γ̄ is the
inverse map of γ. Indeed, l(u) = lev(u) and b(u) = i+1−1 = i, where u ∈ Di+1 \Di.
In the end we obtain the following result.

Corollary 6.1. The map γ : T → P and its inverse map γ̄ : P → T are size-
preserving bijections between Fishburn trees and (2+2)-free posets. In particular, for
each n ≥ 1 we have

|Tn| = |Pn|.

A Fishburn tree and the canonical labeling of the corresponding poset are illustrated
in Figure 9.
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Figure 9: A Fishburn tree T and the poset γ(T ). The poset is equipped with its
canonical labeling; that is, each node u is equipped with the pair of labels

(b(u)
l(u)

)
.

7 Flip and sum operations on Â

Duality acts as an involution on (2+2)-free posets. Dukes and Parviainen [13] showed
that this operation is equivalent to computing the reflection of a Fishburn matrix
in its antidiagonal. On the other hand, it is difficult to infer how duality acts on
the corresponding ascent sequences. Similarly, the sum of two Fishburn matrices
is a Fishburn matrix, but to describe the corresponding sum operation on ascent
sequences is a challenging problem. In this section we use Fishburn covers to provide
a more direct construction for both problems in terms of modified ascent sequences.

Let A = (ai,j) be a k × k matrix. We denote by flip(A) the reflection of A in its
antidiagonal; that is, the (i, j)-th entry of flip(A) is equal to

flip(A)(i, j) = ak+1−j,k+1−i.

Let A = (ai,j) and A′ = (a′i,j) be two matrices of dimension p×p and q×q, respectively,
with p ≤ q. We denote by A + A′ the q × q matrix obtained by summing A and A′

entry by entry; that is, the (i, j)-th entry of A+A′ is equal to

(A+A′)(i, j) =

{
ai,j + a′i,j , if i ≤ p and j ≤ p;

a′i,j , if i > p or j > p.

It is easy to see that if A is a Fishburn matrix, then flip(A) is a Fishburn matrix as
well. Similarly, the sum A+A′ of two Fishburn matrices A and A′ is a Fishburn ma-
trix. The flip and sum problems are formulated in terms of modified ascent sequences
as follows:

• Let x be a modified ascent sequence and let A = (β◦ᾱ)(x) be the corresponding
Fishburn matrix. What is the modified ascent sequence flip(x) that corresponds
to flip(A)?
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Figure 10: Diagrams to compute the flip and sum operations on modified ascent
sequences.

• Let x and x′ be modified ascent sequences and let A = (β ◦ ᾱ)(x) and A′ =
(β◦ᾱ)(x′) be the corresponding Fishburn matrices. What is the modified ascent
sequence x+ x′ that corresponds to A+A′?

An answer to the previous two questions could be obtained by composing the bijection
α, defined in Section 2, with the bijection β, defined in Section 5. For instance, we
could first determine the Fishburn matrix A = β

(
ᾱ(x)

)
associated with the modified

ascent sequence x, then compute flip(A), and finally obtain flip(x) as α
(
β̄(flip(A))

)
.

However, we have defined α in terms of Fishburn trees, while β was defined in terms
of Fishburn covers. To make the whole construction more straightforward, we wish
to reinterpret α and its inverse ᾱ in terms of Fishburn covers (see also Figure 10).

Let x ∈ Â and A ∈ M. With slight abuse of notation, we denote by P(x) the
Fishburn cover of x; that is, we let P(x) = P

(
ᾱ(x)

)
. Similarly, we let P(A) =

P
(
β̄(A)

)
be the Fishburn cover of A. Our first goal is to describe the composition

x
ᾱ

P(x)
β

A

and its inverse

A
β̄

P(A)
α

x,

thus bypassing the construction of the intermediate Fishburn tree. We spell out the
main ideas below, leaving some details to the reader.

We start by redefining α : T → Â in terms of Fishburn covers. Let P = B1 . . . Bk

be a Fishburn cover. For each i, let
−→
Bi be the sequence obtained by arranging Bi in

weakly decreasing order. Following Theorem 3.9, let

D = {i ∈ [k] : i ∈ Bi} and D̄ = {i ∈ [k] : i /∈ Bi}.

Write
D = {i1, i2, . . . , ip} and D̄ = {j1, j2, . . . , jq},

with p + q = k, i1 < i2 < · · · < ip and j1 > j2 > · · · > jm. The modified ascent
sequence x associated with P is defined as follows:

1. Define x(0) =
−→
Bi1

−→
Bi2 . . .

−→
Bip as the sequence obtained by juxtaposing the “diag-

onal blocks”.

2. For s = 1, 2, . . . , q, let x(s) be obtained from x(s−1) by inserting
−→
Bs immediately

before the leftmost occurrence of the integer js.
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Finally, the desired modified sequence is x = x(q). Referring once again to Theo-
rem 3.9, the initial sequence x(0) is the in-order sequence of the “comb-shaped” tree
T0. The second item produces a succession of sequences x(0) ⊂ x(1) ⊂ · · · ⊂ x(q),
where x(s) is the in-order sequence of Ts, for s = 1, 2, . . . , q. In particular, the inser-
tion of

−→
Bs is analogous to the operation of attaching Ts: each insertion creates a new

ascent top; ascent tops have distinct labels; and ascent tops are preserved when new
blocks are appended. To illustrate this construction, let

P = {1}{2, 1}{2}{2, 1}{5, 4, 2}{5, 3, 2}{7, 6, 3}.

be the Fishburn cover of Figure 6. The diagonal blocks are

−→
B1 = 1,

−→
B2 = 21,

−→
B5 = 542,

−→
B7 = 763.

The non-diagonal blocks are

−→
B3 = 2,

−→
B4 = 21,

−→
B6 = 532.

By juxtaposing the diagonal blocks, we obtain

x(0) = 1 21 542 763.

Then we insert the non-diagonal blocks, each one immediately before the leftmost
occurrence of its index, starting from the one with biggest index:

x(0) = 121542763
−→
B6 −→ x(1) = 1215427 532 63
−→
B4 −→ x(2) = 1215 21 427 532 63
−→
B3 −→ x(3) = 1215 21 427 5 2 32 63

In the end, we get the modified ascent sequence

x = x(3) = 121521427523263.

As expected, x is the in-order sequence of the Fishburn tree of Figure 6.

Conversely, we wish to define the Fishburn cover P(x) directly on x. Equivalently, for
each entry xi we determine the index b(xi) of the maximal right path that contains the
corresponding node vi in ᾱ(x). To do so, we recursively apply the max-decomposition
to x, as in the definition of ᾱ. The label of the leftmost occurrence xm of max(x)
is b(xm) = xm. Let y = pref(y)ymsuff(y) be the current sequence in the max-
decomposition of x. Then the leftmost occurrence yj of max(pref(y)) in pref(y) gets
label

b(yj) =

{
yj if ym is a left-to-right maximum of x,
ym otherwise.

While the leftmost occurrence yj of max(suff(y)) in suff(y) gets label

b(yj) = b(ym).
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It is not hard to see that these rules are analogous to the rules given in Equation 2
and illustrated in Figure 5. Below we apply this procedure to the modified ascent
sequence x = 121521427523263 obtained before. At each step, the current leftmost
maxima are highlighted; arrows starting from a current leftmost maximum carry the
b-label of the target node; and b-labels are recorded as subscripts.

1 2 1 5 2 1 4 2 77 5 2 3 2 6 3

5 7

1 2 1 55 2 1 4 2 77 5 2 3 2 67 3

2
6

5
7

1 22 1 55 2 1 45 2 77 56 2 3 2 67 37

1
4

2 5
6

11 22 12 55 24 1 45 25 77 56 2 36 2 67 37

34 6

In the end, we get

x = 11 22 12 55 24 14 45 25 77 56 23 36 26 67 37,

and, as expected, the corresponding Fishburn cover is

P(x) = {1}{2, 1}{2}{2, 1}{5, 4, 2}{5, 3, 2}{7, 6, 3}.

We are now able to compute the flip and sum operations on modified ascent sequences.
For convenience, we represent a Fishburn cover P = B1 . . . Bk as a biword containing
a column

(
i
j

)
for each j ∈ Bi, with entries in the top row sorted in increasing order,

and breaking ties by sorting the bottom row in decreasing order. For instance, the
Fishburn cover obtained above is written as

P(x) =

(
1 2 2 3 4 4 5 5 5 6 6 6 7 7 7
1 2 1 2 2 1 5 4 2 5 3 2 7 6 3

)
.

A biword whose entries are sorted this way is called a Burge word [1, 7]. It is well
known that Burge words are in bijection with nonnegative integer matrices whose
every row and column has at least one nonzero entry: each biword is associated to
a matrix whose (i, j)-th entry is equal to the number of columns

(
i
j

)
contained in

the biword. The map β is simply the restriction of this correspondence on Fishburn
covers and Fishburn matrices.

The flip operation

Let A = (ai,j) be a k×k Fishburn matrix. By applying the flip operation, the (i, j)-th
entry of A is mapped to the (k + 1 − j, k + 1 − i)-th entry of flip(A). In terms of
Fishburn covers, the flip operation acts on the columns of P(A) by(

i

j

)
7−→

(
k + 1− j

k + 1− i

)
.
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Given a Fishburn cover P , let flip(P ) be the biword obtained by applying the above
operation to each column of P (and then sorting the resulting columns accordingly).
It is clear from the preceding discussion that flip(x) is the modified sequence of
flip
(
P(x)

)
; that is,

flip(x) = α
(
flip
(
P(x)

))
Example 1. Let x = 1612423553 be a modified ascent sequence (note that this is
the in-order sequence of the Fishburn tree depicted in Figure 9). We shall compute
flip(x). The Fishburn cover of x is

P(x) =

(
1 2 3 4 5 5 6 6 6 6
1 1 2 2 4 3 6 5 5 3

)
and

flip
(
P(x)

)
=

(
1 2 2 3 4 4 5 5 6 6
1 1 1 2 2 1 4 3 6 5

)
.

Finally, we apply α to obtain

flip(x) = 1611214235.

To check that flip(x) is the correct sequence, it is easy to compute the corresponding
matrices

(
β ◦ ᾱ

)
(x) =


1
1 ·
· 1 ·
· 1 · ·
· · 1 1 ·
· · 1 · 2 1

 and
(
β ◦ ᾱ

)(
flip(x)

)
=


1
2 ·
· 1 ·
1 1 · ·
· · 1 1 ·
· · · · 1 1


to see that each one is the flip of the other.

The sum operation

Let A and A′ be two Fishburn matrices of dimension j × j and k × k, respectively,
with j < k. Let

P(A) =

(
1 · · · 1 2 · · · 2 . . . j · · · j
−→
B1

−→
B2 . . .

−→
Bk

)
and P(A′) =

(
1 · · · 1 2 · · · 2 . . . k · · · k
−→
B′

1

−→
B′

2 . . .
−→
B′

k

)
.

It is easy to see that the Fishburn cover associated to A + A′ contains the union of
columns of A and A′. We define a sum operation on Fishburn covers accordingly.
That is, if P = B1 · · ·Bj and P ′ = B′

1 · · ·B′
k are Fishburn covers, we let

P + P ′ =

(
1 · · · 1 2 · · · 2 . . . j · · · j j + 1 · · · j + 1 . . . k · · · k
−−−−−→
B1 ∪B′

1

−−−−−→
B2 ∪B′

2 . . .
−−−−−→
Bj ∪B′

j

−−−→
B′

j+1 . . .
−→
B′

k

)
.

Therefore, x+ x′ is the modified sequence of P(x) +P(x′); that is,

x+ x′ = α
(
P(x) +P(x′)

)
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Example 2. Let x = 1612423553 and x′ = 113312443 be modified ascent sequences.
We wish to compute their sum x+ x′. We have

P(x) =

(
1 2 3 4 5 5 6 6 6 6
1 1 2 2 4 3 6 5 5 3

)
and P(x′) =

(
1 1 2 3 3 3 4 4 4
1 1 1 3 3 2 4 4 3

)
.

Thus

P(x) +P(x′) =

(
1 1 1 2 2 3 3 3 3 4 4 4 4 5 5 6 6 6 6
1 1 1 1 1 3 3 2 2 4 4 3 2 4 3 6 5 5 3

)
and

x+ x′ = α
(
P(x) +P(x′)

)
= 1113311224432643553.

Again, it is easy to check that the equality
(
β ◦ ᾱ

)
(x+ x′) =

(
β ◦ ᾱ

)
(x) +

(
β ◦ ᾱ

)
(x′)

between the corresponding matrices holds. Indeed,

(
β ◦ ᾱ

)
(x) =


1
1 ·
· 1 ·
· 1 · ·
· · 1 1 ·
· · 1 · 2 1

 ,
(
β ◦ ᾱ

)
(x′) =

21 ·· 1 2
· · 1 2


and

(
β ◦ ᾱ

)
(x+ x′) =


3
2 ·
· 2 2
· 1 1 4
· · 1 1 ·
· · 1 · 2 1

 .

8 Final remarks

We have introduced Fishburn trees and Fishburn covers, two classes of objects that
transparently embody the combinatorial structure of modified ascent sequences, Fish-
burn matrices and (2+2)-free posets. The bijections relating these families are illus-
trated in Figure 11. Fishburn trees act as a central hub from which every other
Fishburn structure can be easily derived. Modified ascent sequences arise from the
in-order traversal of Fishburn trees; if a tree is drawn accordingly, then the sequence
is simply obtained by letting the labels of the tree fall under the action of gravity
(as in Figure 2). In this sense, modified ascent sequences can be regarded as vertical
projections of Fishburn trees. On the other hand, Fishburn matrices and (2+2)-free
posets stem from the rpath-decomposition of Fishburn trees. Referring once again
to the usual representation of trees adopted in this paper, matrices and posets can
be seen as the projection of Fishburn trees along their maximal right paths, that is,
along the NW-SE branches.

One may view Fishburn covers as encodings of the other Fishburn structures in the
following manner. Given a Fishburn cover P = B1 . . . Bk, the other Fishburn objects
are obtained by suitably arranging the “elementary blocks” B1, . . . , Bk:

T : To obtain a Fishburn tree T , each elementary block Bi is encoded as a maximal
right path Wi. Diagonal paths form the tree T0. Then the other paths are
attached, one by one, to the leftmost occurrence of the corresponding label.
This construction has been described in Theorem 3.9.
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ᾱ γ

γ̄

β β̄

Fishburn
trees

Fishburn
covers

rpath-
decomposition Thm 3.9

Figure 11: Bijections relating Fishburn trees and Fishburn covers to modified ascent
sequences, Fishburn matrices and (2+2)-free posets.

Â: To obtain a modified ascent sequence x, each elementary block Bi is encoded
as a decreasing sequence

−→
Bi. Diagonal sequences are juxtaposed to obtain x(0).

Then the remaining sequences are inserted one by one, each one immediately
before the leftmost occurrence of the corresponding integer. This construction
has been described in Section 7.

M: To obtain a Fishburn matrix A, each elementary block Bi is simply encoded as
the i-th row of A under the action of β.

P: To obtain a (2+2)-free poset Q, each elementary block Bi is encoded as the
difference between two consecutive strict down-sets of Q, which are strictly
ordered by inclusion, under the action of γ.

In light of this, we could say that the Fishburn structures considered here fall into
two categories: Fishburn trees and modified sequences are obtained by arranging
their elementary blocks as dictated by the leftmost occurrences of labels or integers.
On the other hand, the most trivial way of arranging elementary blocks—listing one
block above the other, as rows of a matrix or as strict down-sets of a poset—leads to
Fishburn matrices and (2+2)-free posets, respectively.

Fishburn permutations are related to modified ascent sequences by the Burge trans-
pose [2, 7]. The link between these two structures has been extensively discussed [6, 7],
and for this reason we have decided to not include Fishburn permutations in this
paper. A deeper investigation on the relation between Fishburn permutations and
Fishburn trees is left for future work.
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As a first application of our framework, we have provided a more direct solution to
the flip and sum problems on modified ascent sequences. A natural question is to
investigate how the corresponding operations act on Fishburn trees. In Section 7, we
showed that the flip operation acts on the Fishburn cover of a Fishburn tree T by
mapping each column (i, j) to (k + 1 − j, k + 1 − i), where k = max(T ). In other
words, the flip of a Fishburn tree T is obtained by replacing the labels

(
b(v), l(v)

)
with

(
k+1− l(v), k+1−b(v)

)
, for each v ∈ V(T ). A similar argument could be used

to address the sum of two Fishburn trees. Is there a more direct way of computing
the flip and sum of Fishburn trees? Also, is there any other natural involution on
the set of Fishburn trees, and how does the corresponding operation act on modified
ascent sequences, Fishburn matrices and (2+2)-free posets?

Fishburn trees can be used to determine how several statistics and subfamilies of
Fishburn structures are related to each other. We sketch some preliminary results
below, leaving a deeper investigation for future work.

A flat step in a modified ascent sequence x is a pair of consecutive entries xi+1 = xi.
Two elements of a poset Q are indistinguishable if they have the same down-set and
up-set. A modified ascent sequence is primitive if it does not contain flat steps and
a poset is primitive if it has no pairs of indistinguishable elements. Furthermore, a
modified ascent sequence is self-modified if it is equal to the corresponding (plain)
ascent sequence. Dukes and McNamara [12] showed that self-modified ascent se-
quences, Fishburn matrices with positive diagonals, and (2+2)-free posets with a
chain of maximum length are all in bijection.

Proposition 8.1. Let T be a Fishburn tree. Let x = α(T ), A = β(T ) and Q = γ(T )
be the corresponding modified ascent sequence, Fishburn matrix, and (2+2)-free poset,
respectively. Then the following four conditions are equivalent:

1. T is strictly-decreasing;

2. x is primitive;

3. A is binary;

4. Q is primitive.

Similarly, the following four conditions are equivalent:

1. T is comb-shaped;

2. x is self-modified;

3. The main diagonal of A is strictly positive;

4. Q contains a chain of maximum length.

We end with an open problem: Dukes and Parviainen [13] described the set of ascent
sequences corresponding to bidiagonal Fishburn matrices. What is the corresponding
set of Fishburn trees?
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